精英家教网 > 高中数学 > 题目详情
对于任意实数x,[x]表示不超过x的最大整数,如[1.1]=1,[-2.1]=-3.定义R上的函数f(x)=[x]+[2x]+[4x],若A={y|y=f(x),0≤x≤1},则A中所有元素的和为
15
15
分析:根据新定义,[x]表示不超过x的最大整数,要求y=f(x)=[x]+[2x]+[4x],需要分类讨论有几个界点x=
1
4
2
4
3
4
4
4
对其进行讨论,从而进行求解;
解答:解:若A={y|y=f(x),0≤x≤1},
当x∈[0,
1
4
),0≤2x<
1
2
,0≤4x<1,f(x)=[x]+[2x]+[4x]=0;
当x∈[
1
4
1
2
),
1
2
≤2x<1,1≤4x<2,f(x)=[x]+[2x]+[4x]=1;
当x∈[
1
2
3
4
),1≤2x<
3
2
,2≤4x<3,f(x)=[x]+[2x]+[4x]=3;
当x∈[
3
4
,1),
3
2
≤2x<2,3≤4x<4,f(x)=[x]+[2x]+[4x]=4;
f(1)=1+2+4=7;
所以A中所有元素的和为0+1+3+4+7=15
故答案为:15
点评:此题主要考查函数的值,需要分类进行讨论,新定义一般需要认真读题,理解题意,灵活利用已知定义
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,y,定义:F(x,y)=
1
2
(x+y+|x-y|)
,如果函数f(x)=x2,g(x)=x,h(x)=-x+2,那么满足F(F(f(x),g(x)),F(g(x),h(x))≥2的x的集合是
{x|x≤0或x≥
2
}
{x|x≤0或x≥
2
}

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于任意实数x,符号[x]表示不超过x的最大整数,如[4.3]=4、[-2.3]=-3、[4]=4,函数f(x)=[x]叫做“取整函数”,也叫做高斯(Gauss)函数.这个函数在数学本身和生产实践中都有广泛的应用.
从函数f(x)=[x]的定义可以得到下列性质:x-1<[x]≤x<[x+1];与函数f(x)=[x]有关的另一个函数是g(x)={x},它的定义是{x}=x-[x],函数g(x)={x}叫做“取零函数”,这也是一个常用函数.
(1)写出f(5.2)的值及g(x)的值域;
(2)若F(n)=f(log2n)(1≤n≤210,n∈N),写出F(x)的解析式;
(3)求F(1)+F(2)+F(3)+…+F(16)的值.

查看答案和解析>>

同步练习册答案