精英家教网 > 高中数学 > 题目详情

已知点直线过点,且与线段相交,则直线的斜率的取值范围是        

 

【答案】

【解析】

试题分析:因为画出图形,由题意得 所求直线l的斜率k满足 k≥kPB 或 k≤kPA,用直线的斜率公式求出kPB 和kPA 的值,解不等式求出直线l的斜率k的取值范围.即

如图所示:由题意得,所求直线l的斜率k满足 k≥kPB 或 k≤kPA

即 k≥=,或 k≤∴k≥,或k≤-4,

故答案为:k≥或k≤-4.

考点:本题主要是考查直线的倾斜角与斜率的关系的运用。

点评:解决该试题的关键是理解过定点的直线,在旋转过程中,要满足有交点,则倾斜家的变化情况,结合正切函数图形得到斜率的范围。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
上一动点,椭圆C左,右顶点分别为A,B,左焦点为F,若|PF|最大值与最小值分别为4和2.
(1)求椭圆C的标准方程;
(2)已知直线l过点A且倾斜角为30°,点M为椭圆C长轴上一动点,且点M到直线l的距离等于|MB|,若连接PM并延长与椭圆C交于点Q,求S△APQ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,2)和双曲线x2-
y24
=1

(1)求过点A可作几条直线与双曲线有且只有一个公共点;
(2)当过点A的直线与双曲线有两个不同的公共点时,求直线的斜率的取值范围;
(3)当过点A的直线与双曲线没有公共点时,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:2015届福建省高一寒假作业2数学试卷(解析版) 题型:选择题

已知点直线过点,且与线段AB相交,则直线的斜率的取值范围是 (   )

A.   B.  C.      D.

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年广东省高三第五次阶段考试理科数学试卷(解析版) 题型:解答题

已知点),过点作抛物线的切线,切点分别为(其中).

(Ⅰ)若,求的值;

(Ⅱ)在(Ⅰ)的条件下,若以点为圆心的圆与直线相切,求圆的方程;

(Ⅲ)若直线的方程是,且以点为圆心的圆与直线相切,

求圆面积的最小值.

【解析】本试题主要考查了抛物线的的方程以及性质的运用。直线与圆的位置关系的运用。

中∵直线与曲线相切,且过点,∴,利用求根公式得到结论先求直线的方程,再利用点P到直线的距离为半径,从而得到圆的方程。

(3)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,借助于函数的性质圆面积的最小值

(Ⅰ)由可得,.  ------1分

∵直线与曲线相切,且过点,∴,即

,或, --------------------3分

同理可得:,或----------------4分

,∴. -----------------5分

(Ⅱ)由(Ⅰ)知,,,则的斜率

∴直线的方程为:,又

,即. -----------------7分

∵点到直线的距离即为圆的半径,即,--------------8分

故圆的面积为. --------------------9分

(Ⅲ)∵直线的方程是,且以点为圆心的圆与直线相切∴点到直线的距离即为圆的半径,即,    ………10分

当且仅当,即时取等号.

故圆面积的最小值

 

查看答案和解析>>

同步练习册答案