精英家教网 > 高中数学 > 题目详情

若实数x,y满足不等式组数学公式,且目标函数z=ax+by(a>0,b>0)的最大值为12,则数学公式的最小值为________.


分析:已知2a+3b=6,求 的最小值,可以作出不等式的平面区域,先用乘积进而用基本不等式解答.
解答:解:不等式表示的平面区域如图所示阴影部分,
当直线ax+by=z(a>0,b>0)
过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,
目标函数z=ax+by(a>0,b>0)取得最大12,
即4a+6b=12,即2a+3b=6,而 =
故答案为:
点评:本题综合地考查了线性规划问题和由基本不等式求函数的最值问题.要求能准确地画出不等式表示的平面区域,并且能够求得目标函数的最值.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足
f(x1)-f(x2)
x1-x2
<0
,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,
y
x
的取值范围为
[-
1
2
,1]
[-
1
2
,1]

查看答案和解析>>

科目:高中数学 来源:2008-2009学年重庆一中高三(上)10月月考数学试卷(理科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(文科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2013年山东省淄博市高考数学模拟试卷3(理科)(解析版) 题型:填空题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

科目:高中数学 来源:2012年山东省实验中学高考数学三模试卷(理科)(解析版) 题型:解答题

定义在R上的函数y=f(x),若对任意不等实数x1,x2满足,且对于任意的x,y∈R,不等式f(x2-2x)+f(2y-y2)≤0成立.又函数y=f(x-1)的图象关于点(1,0)对称,则当 1≤x≤4时,的取值范围为   

查看答案和解析>>

同步练习册答案