精英家教网 > 高中数学 > 题目详情
f(x)=ax2+ax-1在R上满足f(x)<0,则a的取值范围是(    )

A..a≤0         B.a<-4          C.-4<a<0           D.-4<a≤0

思路分析:当a=0时,-1<0恒成立,当a<0时,必须要满足判别式Δ<0,特别不能遗漏a=0情况.

答案:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=ax2+(a+2)x-1在x∈R上存在反函数,则f-1(1)=_______________.

查看答案和解析>>

科目:高中数学 来源:吉林省模拟题 题型:解答题

已知函数f(x)=ax2-(a+1)x+1,
(Ⅰ)当x∈(,1)时,不等式f(x)>0恒成立,求实数a的取值范围;
(Ⅱ)设H(x)=[f(x)+a-1]ex,当a>-1且a≠0时,时求函数H(x)的单调区间和极值。

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=(m∈R,e=2.718 28…是自然对数的底数).

(1)求函数f(x)的极值;

(2)当x>0时,设f(x)的反函数为f-1(x),对0<p<q,试比较f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函数f(x)=x3+bx2+cx+d(b、c、d∈R且都为常数)的导函数为f′(x)=3x2+4x,且f(1)=7,设F(x)=f(x)-ax2(a∈R).

(1)当a<2时,求F(x)的极小值;

(2)若对任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范围并证明不等式a2-13a+39≥.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)设a∈R,函数f(x)=(ax2+a+1)(e为自然对数的底数).

(1)判断f(x)的单调性;

(2)若f(x)>在x∈[1,2]上恒成立,求a的取值范围.

(文)已知函数f(x)=x3+bx2+cx+1在区间(-∞,-2]上单调递增,在区间[-2,2]上单调递减,且b≥0.

(1)求f(x)的解析式;

(2)设0<m≤2,若对任意的x1、x2∈[m-2,m],不等式|f(x1)-f(x2)|≤16m恒成立,求实数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)已知函数f(x)=(m∈R,e=2.718 28…是自然对数的底数).

(1)求函数f(x)的极值;

(2)当x>0时,设f(x)的反函数为f-1(x),对0<p<q,试比较f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

(文)已知函数f(x)=x3+bx2+cx+d(b、c、d∈R且都为常数)的导函数为f′(x)=3x2+4x,且f(1)=7,设F(x)=f(x)-ax2(a∈R).

(1)当a<2时,求F(x)的极小值;

(2)若对任意的x∈[0,+∞),都有F(x)≥0成立,求a的取值范围并证明不等式a2-13a+39≥.

查看答案和解析>>

同步练习册答案