精英家教网 > 高中数学 > 题目详情
如图3-2-5,设P为△ABC所在平面外一点,点OP在平面ABC上的射影,若PA =PB =PC,则O为△ABC的_____心.

图3-2-5

思路解析:连结AOBOCO,则AOBOCO分别为PAPBPC在平面ABC内的射影.?

又∵PA =PB =PC,由射影长定理,则OA =OB =OC,?

O为△ABC的外心.

答案:外

练习册系列答案
相关习题

科目:高中数学 来源:2013届河北省唐山市高二第一学期期中考试文科数学试卷 题型:解答题

(12分) 如图1-5,在平面直角坐标系xOy中,M、N分别是椭圆+=1的顶点,过坐标原点的直线交椭圆于P,A两点,其中点P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.

(1)若直线PA平分线段MN,求k的值;

(2)当k=2时,求点P到直线AB的距离d;

(3)对任意的k>0,求证:PA⊥PB.

 

 

 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-2(3)-19所示,a是海面上一条南北方向的海防警戒线,在a上点A处有一个水声监测点,另两个监测点B、C分别在A的正东方20 km处和54 km处.某时刻,监测点B收到发自静止目标P的一个声波,8 s后监测点C相继收到这一信号,在当时的气象条件下,声波在水中的传播速率是1.5 km/s.

    (1)设A到P的距离为x km,用x表示B、C到P的距离,并求x的值;

    (2)求静止目标P到海防警戒线a的距离(精确到0.01 km).

   

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1-1-5,已知A、B、C是直线m上的三点,且|AB|=|BC|=6,⊙O′切直线m于点A,又过B、C作⊙O′异于m的两切线,切点分别为D、E,设两切线交于点P.

图1-1-5

(1)求点P的轨迹方程;

(2)经过点C的直线l与点P的轨迹交于M、N两点,且点C分所成比等于2∶3,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)过一点向平面引垂线,________叫做这个点在这个平面内的射影;当这一点在平面内时,该点在平面上的射影就是它______;这一点与_______的线段叫做这点到这个平面的_______.如图所示,直线PQα,Qα,则点Q是______在平面α内的_____,线段_______是点_______到平面α的______.?

(2)一条直线和一个平面相交,但不______时,这条直线就叫做这个平面的_______,斜线与平面的交点叫做_____.从平面外一点向平面引斜线,这点与________间的线段叫做这点到这个平面的_______.如图所示,直线PRα=R,PR不______于α,直线PRα的一条_____,点R为_______,线段_____是点Pα的______.?

(3)平面外一点到这个平面的垂线段______条,而这点到这个平面的______有无数条.?

(4)从斜线上斜足以外的一点向平面引垂线,过垂足的直线叫做斜线在这个平面内的_______,________与________间的线段叫做这点到平面的斜线段在这个平面内的________.如图所示,直线_____是直线PR在平面α上的______,线段______是点P到平面α的斜线段PR在平面α上的射影.?

(5)斜线上任意一点在平面上的射影一定在斜线的_____上.事实上,设a是平面α的斜线,B为斜足,在a上任取一点A,作AA1α,A1是垂足,则A1B确定的直线a′是a在平面α内的______,如图所示,设Pa上任意一点,在aAA1确定的平面内,作PP1AA1,PP1必与a′相交于一点P1.∵AA1α__________ ,PP1______________AA1,∴PP1__________α.P1P在平面α上的射影,所以点P在平面α上的射影一定在直线a在平面α上的射影a′上.

查看答案和解析>>

同步练习册答案