精英家教网 > 高中数学 > 题目详情
12.已知点P(x,y,z)到原点的距离为1,则x,y,z所满足的关系式为x2+y2+z2=1.

分析 直接利用空间两点距离公式求解即可.

解答 解:点P(x,y,z)到原点的距离为1,
可得$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}=1$,
即x2+y2+z2=1.
故答案为:x2+y2+z2=1;

点评 本题考查空间两点间距离公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知f(x)=1g(1+2x+3x+…+(n-1)x+nx•a),若f(x)在x∈(-∞,1]有意义,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P(x,y)在直线x+y=12运动,则$\sqrt{{x}^{2}+1}+\sqrt{{y}^{2}+16}$的最小值为13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知四边形ABCD内接于圆,延长AB和DC交于E,EG平分∠E,且与BC、AD别相交于F、G.求证:∠CFG=∠DGF.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知:如图,点I是△ABC的内心,延长AI交△ABC的外接圆于点D,求证:点D是△BCI的外心.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=$\frac{1}{2}$AD.
(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求锐二面角A-CD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点为F1,F2,右顶点为A,上顶点为B.已知|AB|=$\frac{\sqrt{3}}{2}$|F1F2|.
(1)求椭圆的离心率;
(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,是否存在经过原点的直线l与该圆相切,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线x2-y2=2的右准线方程为x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1=2,侧棱AA1⊥平面ABC,D为棱A1B1的中点,E为AA1的中点,点F在棱AB上,且AF=$\frac{1}{4}$AB.
(1)求证:EF∥平面BC1D;
(2)求VD-EBC1的体积.

查看答案和解析>>

同步练习册答案