精英家教网 > 高中数学 > 题目详情
(2013•宿迁一模)已知各项均为正数的数列{an}的前n项和为Sn,数列{an2}的前n项和为Tn,且(Sn-2)2+3Tn=4,n∈N*
(1)证明数列{an}是等比数列,并写出通项公式;
(2)若Sn2Tn<0对n∈N*恒成立,求λ的最小值;
(3)若an2xan+12yan+2成等差数列,求正整数x,y的值.
分析:(1)因为(Sn-2)2+3Tn=4,且an>0,所以推出a1=1,a2=
1
2
;由(Sn-2)2+3Tn=4,知(Sn+1-2)2+3Tn+1=4,由此能求出数列{an}的通项公式.
(2)由(1)得Sn=
1-(
1
2
)
n
1-
1
2
=2[1-(
1
2
)
n
]
Tn=
1-(
1
4
)
n
1-
1
4
=
4
3
[1-(
1
4
)
n
]
,由此能求出λ的最小值.
(3)若an2xan+12yan+2成等差数列,其中x,y为正整数,则
1
2n-1
2x
2n
2y
2n+1
成等差数列,整理,得2x=1+2y-2,由此能求出正整数x,y的值.
解答:解:(1)因为(Sn-2)2+3Tn=4
其中Sn是数列{an}的前n项和,Tn是数列{
a
2
n
}
的前n项和,且an>0,
当n=1时,由(a1-2)2+3a12=4
解得a1=1,…(2分)
当n=2时,由(1+a2-2)2+3(1+a22)=4
解得a2=
1
2
; …(4分)
(Sn-2)2+3Tn=4
(Sn+1-2)2+3Tn+1=4
两式相减得(Sn+1-Sn)(Sn+1+Sn-4)+3
a
2
n+1
=0

(Sn+1+Sn-4)+3
a
 
n+1
=0
,…(5分)
亦即2Sn+1-Sn=2,从而2Sn-Sn-1=2,(n≥2),
再次相减得an+1=
1
2
an,(n≥2)
,又a2=
1
2
a1

所以
an+1
an
=
1
2
,(n≥1)

所以数列{an}是首项为1,公比为
1
2
的等比数列,…(7分)
其通项公式为an=
1
2n-1
,n∈N*.…(8分)
(2)由(1)可得Sn=
1-(
1
2
)
n
1-
1
2
=2[1-(
1
2
)
n
]

首项为1,{an2}是一个公比为
1
4
的等比数列,
Tn=
1-(
1
4
)
n
1-
1
4
=
4
3
[1-(
1
4
)
n
]
,…(10分)
Sn2Tn<0对n∈N*恒成立,
只需λ>
Sn2
Tn
=3×
1-(
1
2
)n
1+(
1
2
)n
=3-
6
2n+1
对n∈N*恒成立,
∵3-
6
2n+1
<3对n∈N*恒成立,∴λ≥3.
(3)若an2xan+12yan+2成等差数列,其中x,y为正整数,
1
2n-1
2x
2n
2y
2n+1
成等差数列,
整理,得2x=1+2y-2
当y>2时,等式右边为大于2的奇数,等式左边为偶数或1,
等式不能成立,
∴满足条件的正整数x,y的值为x=1,y=2.
点评:本题考查等比数列的证明和数列的通项公式的求法,考查最小值的求法,考查满足条件的实数值的求法.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宿迁一模)已知函数f(x)=||x-1|-1|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实数根x1,x2,x3,x4,则x1x2x3x4的取值范围是
(-3,0)
(-3,0)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,BC=BB1,D为AB的中点.
(1)求证:BC1⊥平面AB1C;
(2)求证:BC1∥平面A1CD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)若复数z满足iz=-1+
3
i
,其中i是虚数单位,则|z|=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)某商场有四类食品,其中粮食类、植物油类、动物类及果蔬类分别有40种、10种、30种、20 种,现采用分层抽样的方法,从中随机抽取一个容量为20的样本进行食品安全检测,则抽取的动物类食品种数是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•宿迁一模)已知某同学五次数学成绩分别是:121,127,123,a,125,若其平均成绩是124,则这组数据的方差是
4
4

查看答案和解析>>

同步练习册答案