精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$.
(I)判断并证明f(x)的奇偶性;
(II)若函数F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零点,求实数k的取值范围;
(Ⅲ)若对于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,求实数m的取值范围.

分析 (I)f(x)的定义域为R,利用奇函数的定义证明f(x)的奇偶性;
(II)若函数F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零点,$\frac{{2}^{x}-1}{{2}^{x}+1}$-$\frac{3-{2}^{x}}{k}$-1=0在[-1,1]有解,分离参数,即可求实数k的取值范围;
(Ⅲ)若对于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,则对于任意a∈[1,3],a2-2algm>1-2a2,lgm<$\frac{1}{2}$(3a-$\frac{1}{a}$),求出右边的最小值,即可求实数m的取值范围.

解答 解:(I)f(x)的定义域为R,则:
f(-x)=$\frac{{2}^{-x}-1}{{2}^{-x}+1}$=$\frac{1-{2}^{x}}{1+{2}^{x}}$=-f(x),
∴函数是奇函数;
(II)若函数F(x)=f(x)-$\frac{3-{2}^{x}}{k}$-1在[-1,1]有零点,则$\frac{{2}^{x}-1}{{2}^{x}+1}$-$\frac{3-{2}^{x}}{k}$-1=0在[-1,1]有解,
∴k=$\frac{1}{2}$(2x-3)(2x+1)=$\frac{1}{2}$(2x-1)2-2,
∵-1≤x≤1,∴$\frac{1}{2}$≤2x≤2,
∴-2≤k≤-$\frac{3}{2}$;
(Ⅲ)f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$=1-$\frac{2}{{2}^{x}+1}$是R上的增函数,
若对于任意a∈[1,3],不等式f(a2-2algm)+f(2a2-1)>0,
则对于任意a∈[1,3],a2-2algm>1-2a2
∴lgm<$\frac{1}{2}$(3a-$\frac{1}{a}$)
∵y=3a-$\frac{1}{a}$在[1,3]上单调递增,
∴ymin=1,
∴lgm<1,
∴0<m<10.

点评 本题考查函数的奇偶性、单调性,考查函数的零点,恒成立问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数f(x)=$\sqrt{lo{g}_{3}(3x-1)}$+7的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若圆锥的高等于底面直径,则它的底面积与侧面积之比为(  )
A.1:2B.1:$\sqrt{3}$C.1:$\sqrt{5}$D.$\sqrt{3}$:2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若f(x)=$\left\{\begin{array}{l}{2x-3(x>0)}\\{g(x)(x<0)}\end{array}\right.$是偶函数,则g(x)=-2x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a>0,h(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一点x0,使h(x0)>g(x0)成立,则实数a的取值范围为(  )
A.($\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$,+∞)B.($\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$+∞)C.(-∞,$\frac{\sqrt{2}-1}{2}$e${\;}^{\sqrt{2}}$)D.(-∞,$\frac{\sqrt{2}+1}{2}$e${\;}^{\sqrt{2}}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设a>0,f(x)=$\frac{{2}^{x}}{a}$+$\frac{a}{{2}^{x}}$是定义在R上的偶函数.
(1)求实数a;
(2)求f(x)在x∈[-1,2]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求以曲线2x2+y2-4x-10=0和y2=2x-2的交点与原点的连线为渐近线,且实轴长为12的双曲线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在各项均为正数的等比数列{an}中,若a1•a19=100,则a9•a10•a11的值为1000.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若函数f(x)=loga(a2x-4ax+4),0<a<1,则使f(x)>0的x的取值范围是(loga3,loga2)∪(loga2,0).

查看答案和解析>>

同步练习册答案