ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®
·ÖÎö£º±¾Ì⿼²éµÄ֪ʶµãÊÇÀà±ÈÍÆÀí£¬ÓÉÃüÌâÖеġ°µÈºÅ¡±ÐÔÖÊ£¬Àà±ÈÍÆÀí³ö¡±¡°´óÓںš±µÄÐÔÖÊ£®ÓÉa1=1£¬an+1=an3+1£¬an¡Ý1£®µÃ³ö£ºan+1=an3+1¡Ýan2+1¡Ý2an£¬´Ó¶ø
an+1
an
¡Ý2
£¬an=
an
an-1
an-1
an-2
•¡­•
a3
a2
a2
a1
a1¡Ý2n-1
µÃµ½an¡Ý2n-1£¬×îºóÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉÖ¤µÃ½áÂÛ£®
½â´ð£º½â£º¡ßa1=1£¬an+1=an3+1£¬an¡Ý1£®¡­4¡ä
¡àÓУºan+1=an3+1¡Ýan2+1¡Ý2an£¬
¡à
an+1
an
¡Ý2
£®¡­8¡ä
¡àan=
an
an-1
an-1
an-2
•¡­•
a3
a2
a2
a1
a1¡Ý2n-1
£¬
¼´an¡Ý2n-1£®¡­11¡ä
¹ÊSn=a1+a2+¡­+an¡Ý1+2+22+¡­+2n-1=
1-2n
1-2
=2n-1
£®
¡àSn¡Ý2n-1³ÉÁ¢£®¡­14¡ä
µãÆÀ£ºÀà±ÈÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©ÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÒ»ÖÂÐÔ£»£¨2£©ÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍƲâÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨²ÂÏ룩£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

£¨±¾Ð¡ÌâÂú·Ö14·Ö£©

ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁеÄÊ×ÏÈç¹ûµ±Ê±£¬£¬ÔòÒ×֪ͨÏǰÏîµÄºÍ. ½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁеÄÊ×ÏÈç¹ûµ±Ê±£¬£¬ÄÇô£¬ÇÒ. ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ¡£ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤£¬¿ÉÒÔÏÈÖ¤£¬¶øÒªÖ¤£¬Ö»ÐèÖ¤£¨£©. ½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺

ÒÑÖªº¯Êý£¬ÊýÁÐÂú×㣬£¬ÈôÊýÁеÄÇ°ÏîµÄºÍΪ£¬ÇóÖ¤£º.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2009-2010ѧÄêºþ±±Ê¡²¿·ÖÖصãÖÐѧÁª¿¼¸ßÒ»£¨Ï£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸