ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®
·ÖÎö£º±¾Ì⿼²éµÄ֪ʶµãÊÇÀà±ÈÍÆÀí£¬ÓÉÃüÌâÖеġ°µÈºÅ¡±ÐÔÖÊ£¬Àà±ÈÍÆÀí³ö¡±¡°´óÓںš±µÄÐÔÖÊ£®ÓÉa
1=1£¬a
n+1=a
n3+1£¬a
n¡Ý1£®µÃ³ö£ºa
n+1=a
n3+1¡Ýa
n2+1¡Ý2a
n£¬´Ó¶ø
¡Ý2£¬
an=••¡•••a1¡Ý2n-1µÃµ½a
n¡Ý2
n-1£¬×îºóÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¼´¿ÉÖ¤µÃ½áÂÛ£®
½â´ð£º½â£º¡ßa
1=1£¬a
n+1=a
n3+1£¬a
n¡Ý1£®¡4¡ä
¡àÓУºa
n+1=a
n3+1¡Ýa
n2+1¡Ý2a
n£¬
¡à
¡Ý2£®¡8¡ä
¡à
an=••¡•••a1¡Ý2n-1£¬
¼´a
n¡Ý2
n-1£®¡11¡ä
¹Ê
Sn=a1+a2+¡+an¡Ý1+2+22+¡+2n-1==2n-1£®
¡àS
n¡Ý2
n-1³ÉÁ¢£®¡14¡ä
µãÆÀ£ºÀà±ÈÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©ÕÒ³öÁ½ÀàÊÂÎïÖ®¼äµÄÏàËÆÐÔ»òÒ»ÖÂÐÔ£»£¨2£©ÓÃÒ»ÀàÊÂÎïµÄÐÔÖÊÈ¥ÍƲâÁíÒ»ÀàÊÂÎïµÄÐÔÖÊ£¬µÃ³öÒ»¸öÃ÷È·µÄÃüÌ⣨²ÂÏ룩£®
¿ÆÄ¿£º¸ßÖÐÊýѧ
À´Ô´£º2009-2010ѧÄêºþ±±Ê¡²¿·ÖÖصãÖÐѧÁª¿¼¸ßÒ»£¨Ï£©ÆÚÖÐÊýѧÊÔ¾í£¨½âÎö°æ£©
ÌâÐÍ£º½â´ðÌâ
ÔĶÁÏÂÃæÒ»¶ÎÎÄ×Ö£ºÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1=2£¬ÔòÒ×֪ͨÏîan=2n-1£¬Ç°nÏîµÄºÍSn=n2£®½«´ËÃüÌâÖеġ°µÈºÅ¡±¸ÄΪ¡°´óÓںš±£¬ÎÒÃǵõ½£ºÊýÁÐ{an}µÄÊ×Ïîa1=1£¬Èç¹ûµ±n¡Ý2ʱ£¬an-an-1£¾2£¬ÄÇôan£¾2n-1£¬ÇÒSn£¾n2£®ÕâÖÖ´Ó¡°µÈ¡±µ½¡°²»µÈ¡±µÄÀà±ÈºÜÓÐȤ£®ÓÉ´Ë»¹¿ÉÒÔ˼¿¼£ºÒªÖ¤Sn£¾n2£¬¿ÉÒÔÏÈÖ¤an£¾2n-1£¬¶øÒªÖ¤an£¾2n-1£¬Ö»ÐèÖ¤an-an-1£¾2£¨n¡Ý2£©£®½áºÏÒÔÉÏ˼Ïë·½·¨£¬Íê³ÉÏÂÌ⣺
ÒÑÖªº¯Êýf£¨x£©=x3+1£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=f£¨an£©£¬ÈôÊýÁÐ{an}µÄÇ°nÏîµÄºÍΪSn£¬ÇóÖ¤£ºSn¡Ý2n-1£®
²é¿´´ð°¸ºÍ½âÎö>>