精英家教网 > 高中数学 > 题目详情
已知椭圆 + =1,m为常数且m>0,求证:不论b为怎样的正实数,椭圆的焦点不变.

证明:∵m>0,∴b2+m>b2.?

∴椭圆的焦点在x轴上.?

=,得椭圆的焦点为?(±,0).

∵m为常数,∴椭圆的焦点不变.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C 1
x2
a2
+
y2
b2
=λ1
(a>b>0,λ1>0)和双曲线C 2
x2
m2
-
y2
n2
=λ2(λ2≠0)
,给出下列命题:
①对于任意的正实数λ1,曲线C1都有相同的焦点;
②对于任意的正实数λ1,曲线C1都有相同的离心率;
③对于任意的非零实数λ2,曲线C2都有相同的渐近线;
④对于任意的非零实数λ2,曲线C2都有相同的离心率.
其中正确的为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年陕西卷) (14分)

已知椭圆C:=1(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.

(Ⅰ)求椭圆C的方程;

(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:=1与椭圆=1有相同的离心率,则椭圆C的方程可能是(  )

A.=m2m≠0)

B.=1

C.=1

D.=1

查看答案和解析>>

科目:高中数学 来源:山东省济南市2010届高三第二次模拟考试数学文 题型:解答题

(本小题满分12分)
已知椭圆C: +=1(a>b>0)的离心率e=,且椭圆经过点N(2,-3).
(1)求椭圆C的方程;
(2)求椭圆以M(-1,2)为中点的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年人教版高考数学文科二轮专题复习提分训练22练习卷(解析版) 题型:解答题

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线x-y+=0相切,过点P(4,0)且不垂直于x轴直线l与椭圆C相交于AB两点.

(1)求椭圆C的方程;

(2)·的取值范围;

(3)B点关于x轴的对称点是E,证明:直线AEx轴相交于定点.

 

查看答案和解析>>

同步练习册答案