精英家教网 > 高中数学 > 题目详情
10.若函数f(x)=2sin(ωx)(ω>0)的最小正周期为$\frac{π}{2}$,则ω=4.

分析 由三角函数的周期性及其求法可得T=$\frac{π}{2}$=$\frac{2π}{ω}$,即可解得ω的值.

解答 解:由三角函数的周期性及其求法可得:T=$\frac{π}{2}$=$\frac{2π}{ω}$,
解得:ω=4.
故答案为:4.

点评 本题主要考查了三角函数的周期性及其求法,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若-$\frac{π}{2}$<α<β<$\frac{π}{2}$,则α-β的取值范围是(  )
A.(-π,π)B.(0,π)C.(-π,0)D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求值
(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
(2)已知sin(3π+θ)=$\frac{1}{4}$,求$\frac{cos(π+θ)}{cosθ•[cos(π+θ)-1]}$+$\frac{cos(θ-2π)}{cos(θ+2π)•cos(θ+π)+cos(-θ)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数f(x)=$\sqrt{x-1}$的定义域是(  )
A.[1,+∞)B.(1,+∞)C.(0,1)D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)=sin2x与函数g(x)=2x的图象的交点的个数是(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x2+y2+x+$\sqrt{3}$y+tanθ=0(-$\frac{π}{2}$<θ<$\frac{π}{2}$)表示圆,则θ的取值范围为$(-\frac{π}{2},\frac{π}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若不等式|x+1|+|x-m|<5(m∈Z)的解集为A,且3∈A.
(1)求m的值
(2)若a,b,c∈R,且满足a+2b+2c=m,求a2+b2+c2的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC中,cosA=$\frac{2\sqrt{5}}{5}$,cosB=$\frac{3\sqrt{10}}{10}$,则内角C等于(  )
A.$\frac{3π}{4}$B.$\frac{2π}{3}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,折叠矩形纸片ABCD,使A点落在边BC上的E处,折痕的两端点M、N分别在线段AB和AD上(不与端点重合).已知AB=2,BC=$\frac{{4\sqrt{3}}}{3}$,设∠AMN=θ.
(1)用θ表示线段AM的长度,并求出θ的取值范围;
(2)试问折痕MN的长度是否存在最小值,若存在,求出此时cosθ的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案