1£®Ä³µçÊÓ¾ºÈü½ØÃæÉèÖÃÁËÏȺóÈýµÀ³ÌÐò£¬ÓÅ¡¢Á¼¡¢ÖУ¬ÈôÑ¡ÊÖÔÚijµÀ³ÌÐòÖлñµÃ¡°ÖС±£¬Ôò¸ÃÑ¡ÊÖÔÚ±¾µÀ³ÌÐòÖв»Í¨¹ý£¬ÇÒ²»ÄܽøÈëÏÂÃæµÄ³ÌÐò£¬Ñ¡ÊÖÖ»ÓÐÈ«²¿Í¨¹ýÈýµÀ³ÌÐò²ÅËãͨ¹ý£¬Ä³Ñ¡ÊּײμÓÁ˸þºÈü½ÚÄ¿£¬ÒÑÖª¼×ÔÚÿµÀ³ÌÐòÖÐͨ¹ýµÄ¸ÅÂÊΪ$\frac{3}{4}$£¬Ã¿µÀ³ÌÐòÖеÃÓÅ¡¢Á¼¡¢ÖеĸÅÂÊ·Ö±ðΪp1£¬$\frac{1}{2}$£¬p2£®
£¨1£©Çó¼×²»ÄÜͨ¹ýµÄ¸ÅÂÊ£»
£¨2£©Éè¦ÎΪÔÚÈýµÀ³ÌÐòÖлñÓŵĴÎÊý£¬Çó¦ÎµÄ·Ö²¼ÁУ®

·ÖÎö £¨1£©ÓÉÒÑÖªÁгö·½³Ì×éÇó³ö${p}_{1}={p}_{2}=\frac{1}{4}$£¬ÓÉ´ËÄÜÇó³ö¼×²»ÄÜͨ¹ýµÄ¸ÅÂÊ£®
£¨2£©ÓÉÌâÒâµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁУ®

½â´ð ½â£º£¨1£©¡ßijѡÊּײμÓÁ˸þºÈü½ÚÄ¿£¬ÒÑÖª¼×ÔÚÿµÀ³ÌÐòÖÐͨ¹ýµÄ¸ÅÂÊΪ$\frac{3}{4}$£¬
ÿµÀ³ÌÐòÖеÃÓÅ¡¢Á¼¡¢ÖеĸÅÂÊ·Ö±ðΪp1£¬$\frac{1}{2}$£¬p2£®
¡à$\left\{\begin{array}{l}{{p}_{1}+\frac{1}{2}=\frac{3}{4}}\\{{p}_{1}+{p}_{2}=\frac{1}{2}}\end{array}\right.$£¬½âÊÇ${p}_{1}={p}_{2}=\frac{1}{4}$£¬
ÉèʼþA±íʾ¡°¼×²»ÄÜͨ¹ý¡±£¬
Ôò¼×²»ÄÜͨ¹ýµÄ¸ÅÂÊP£¨A£©=$\frac{1}{4}+\frac{3}{4}¡Á\frac{1}{4}+\frac{3}{4}¡Á\frac{3}{4}¡Á\frac{1}{4}$=$\frac{37}{64}$£®
£¨2£©ÓÉÌâÒâµÃ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{1}{4}+\frac{1}{2}¡Á\frac{1}{2}¡Á\frac{1}{2}=\frac{9}{16}$£¬
P£¨¦Î=2£©=$\frac{1}{4}¡Á\frac{1}{4}¡Á\frac{1}{4}+\frac{1}{4}¡Á\frac{1}{4}¡Á\frac{1}{2}+\frac{1}{4}¡Á\frac{1}{2}¡Á\frac{1}{4}+$$\frac{1}{2}¡Á\frac{1}{4}¡Á\frac{1}{4}$=$\frac{7}{64}$£¬
P£¨¦Î=3£©=$\frac{1}{4}¡Á\frac{1}{4}¡Á\frac{1}{4}$=$\frac{1}{64}$£¬
P£¨¦Î=1£©=1-P£¨¦Î=0£©-P£¨¦Î=2£©-P£¨¦Î=3£©=$\frac{5}{16}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 2 3
 P $\frac{9}{16}$ $\frac{5}{16}$ $\frac{7}{64}$ $\frac{1}{64}$

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬ÔÚÀúÄê¸ß¿¼Öж¼ÊDZؿ¼ÌâÐÍÖ®Ò»£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êý$f£¨x£©=Asin£¨{¦Øx+¦Õ}£©£¨{A£¾0£¬¦Ø£¾0£¬-\frac{¦Ð}{2}¡Ü¦Õ£¼\frac{¦Ð}{2}}£©$µÄ×î´óֵΪ$\sqrt{2}$£¬Í¼Ïó¹ØÓÚ$x=\frac{¦Ð}{3}$¶Ô³Æ£¬ÇÒͼÏóÉÏÏàÁÚÁ½¸ö×î¸ßµãµÄ¾àÀëΪ¦Ð£®
£¨1£©Çóf£¨x£©µÄ½âÎöʽ£¬²¢Ð´³öf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£®
£¨2£©Èô°Ñf£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{12}$¸öµ¥Î»£¬ºá×ø±êÉ쳤ΪԭÀ´µÄ2±¶µÃy=g£¨x£©Í¼Ïóµ±x¡Ê[0£¬1]ʱ£¬ÊÔÖ¤Ã÷£¬g£¨x£©¡Ýx£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬PA¡ÍÃæABCD£¬PA=BC=4£¬AD=2£¬AC=AB=3£¬AD¡ÎBC£¬NÊÇPCµÄÖе㣮
£¨¢ñ£©Ö¤Ã÷£ºND¡ÎÃæPAB£»
£¨¢ò£©ÇóANÓëÃæPNDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÏòÁ¿$\overrightarrow{OA}$¡¢$\overrightarrow{OB}$µÄ¼Ð½ÇΪ60¡ã£¬|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=2£¬Èô$\overrightarrow{OC}=2\overrightarrow{OA}+\overrightarrow{OB}$£¬Ôò$|\overrightarrow{OC}|$=2$\sqrt{7}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Ò»±ÊͶ×ʵĻر¨·½°¸Îª£ºµÚÒ»Ìì»Ø±¨0.5Ôª£¬ÒÔºóÿÌìµÄ»Ø±¨·­Ò»·¬£¬ÔòͶ×ʵÚxÌìÓëµ±ÌìµÄͶ×ʻر¨yÖ®¼äµÄº¯Êý¹ØÏµÎª£¨¡¡¡¡£©
A£®y=0.5x2£¬x¡ÊN*B£®y=2x£¬x¡ÊN*C£®y=2x-1£¬x¡ÊN*D£®y=2x-2£¬x¡ÊN*

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªf£¨x£©=elnx£¬g£¨x£©=$\frac{1}{e}$f£¨x£©-x+1£¬h£¨x£©=$\frac{1}{2}$x2£®
£¨1£©Çóg£¨x£©µÄ¼«´óÖµ£»
£¨2£©Ö¤Ã÷£ºµ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬h£¨x£©¡Ýf£¨x£©£»
£¨3£©µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬ÄÜ·ñ´æÔÚ³£Êýk£¬b£¬Ê¹h£¨x£©¡Ýkx+b£¬f£¨x£©¡Üxk+b¶¼³ÉÁ¢£¬Èô´æÔÚ£¬Çó³ök£¬b£¬Èô²»´æÔÚ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÔ²C¾­¹ýÈýµãO£¨0£¬0£©£¬A£¨1£¬3£©£¬B£¨4£¬0£©£®
£¨¢ñ£©ÇóÔ²CµÄ·½³Ì£»
£¨¢ò£©Çó¹ýµãP£¨3£¬6£©ÇÒ±»Ô²C½ØµÃÏÒ³¤Îª4µÄÖ±Ïߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Éè$a={3^{\frac{1}{3}}}£¬b={£¨{\frac{1}{4}}£©^{3.2}}£¬c={log_{0.7}}3$£¬Ôòa£¬b£¬cµÄ´óС¹ØÏµÎª£¨¡¡¡¡£©
A£®c£¼a£¼bB£®c£¼b£¼aC£®b£¼a£¼cD£®a£¼b£¼c

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Èôº¯Êýy=f£¨x£©Âú×ãf£¨a+x£©+f£¨a-x£©=2b£¨ÆäÖÐa£¬b²»Í¬Ê±Îª0£©£¬Ôò³Æº¯Êýy=f£¨x£©Îª¡°×¼Ææº¯Êý¡±£¬³Æµã£¨a£¬b£©Îªº¯Êýf£¨x£©µÄ¡°ÖÐÐĵ㡱£®ÏÖÓÐÈçÏÂÃüÌ⣺
¢Ùº¯Êýf£¨x£©=sinx+1ÊÇ×¼Ææº¯Êý£»
¢ÚÈô×¼Ææº¯Êýy=f£¨x£©ÔÚRÉϵġ°ÖÐÐĵ㡱Ϊ£¨a£¬f£¨a£©£©£¬Ôòº¯ÊýF£¨x£©=f£¨x+a£©-f£¨a£©ÎªRÉÏµÄÆæº¯Êý£»
¢ÛÒÑÖªº¯Êýf£¨x£©=x3-3x2+6x-2ÊÇ×¼Ææº¯Êý£¬ÔòËüµÄ¡°ÖÐÐĵ㡱Ϊ£¨1£¬2£©£»
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ¢Ù¢Ú¢Û£®£®£¨Ð´³öËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸