精英家教网 > 高中数学 > 题目详情
1.已知A、B、C是球O的球面上三点,AB=2,BC=4,∠ABC=60°,且棱锥O-ABC的体积为$\frac{{4\sqrt{6}}}{3}$,则球O的表面积为48π.

分析 求出底面三角形的面积,利用三棱锥的体积求出O到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的体积.

解答 解:三棱锥O-ABC,A、B、C三点均在球心O的表面上,且AB=2,BC=4,∠ABC=60°,AC=2$\sqrt{3}$,外接圆的半径为:GA=2,
△ABC的外接圆的圆心为G,则OG⊥⊙G,
∵S△ABC=$\frac{1}{2}×2×4×\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,三棱锥O-ABC的体积为$\frac{{4\sqrt{6}}}{3}$,
∴$\frac{1}{3}$S△ABC•OG=$\frac{{4\sqrt{6}}}{3}$,即$\frac{1}{3}×2\sqrt{3}×OG$=$\frac{{4\sqrt{6}}}{3}$,
∴OG=2$\sqrt{2}$,
球的半径为:$\sqrt{4+8}$=2$\sqrt{3}$.
球的表面积:4π×12=48π.
故答案为:48π.

点评 本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若实数x>0,则1-x-$\frac{4}{x}$的最大值是-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若直角坐标平面内两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q关于原点对称,则称(P,Q)是函数y=f(x)的一个“伙伴点组”(点组(P,Q)与(Q,P)看作同一个“伙伴点组”).已知函数$f(x)=\left\{\begin{array}{l}kx-1,x>0\\-ln(-x),x<0\end{array}\right.$,有两个“伙伴点组”,则实数k的取值范围是(  )
A.(-∞,0)B.(0,1)C.(0,$\frac{1}{2}$)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,在几何体ABCDE中,AB=BC=CA=EB=EC=2$\sqrt{3}$,DE=$\sqrt{2}$,点D在底面ABC上的射影O为底面三角形ABC的中心,平面BEC⊥平面ABC.
(1)判断A,D,E,O四点是否共面,并证明你的结论;
(2)求DE与平面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设计算法,求ax+b=0的解,并画出流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列有关命题的说法错误的是(  )
A.若“p∨q”为假命题,则p,q均为假命题
B.“x=1”是“x≥1”的充分不必要条件
C.“sinx=$\frac{1}{2}$”的必要不充分条件是“x=$\frac{π}{6}$”
D.若命题p:?x0∈R,x02≥0,则命题¬p:?x∈R,x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知矩形ABCD,PA⊥面ABCD,连接AC、BD、PB、PC、PD,则下列各组向量中数量积不为0的是(  )
A.$\overrightarrow{PC}$和$\overrightarrow{BD}$B.$\overrightarrow{DA}$和$\overrightarrow{PB}$C.$\overrightarrow{PD}$与$\overrightarrow{AB}$D.$\overrightarrow{PC}$与$\overrightarrow{AD}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知f(x)=$\frac{{2}^{x+1}+1}{{2}^{x}-1}$,且对于任意x∈[1,3],不等式f(x)>|x-2|+m恒成立,则m的取值范围是(  )
A.(-∞,-4]B.(-$\frac{1}{2}$,+∞)C.(-∞,-$\frac{9}{8}$)D.(-∞,$\frac{10}{7}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,已知sinA+cosA=$\frac{1}{5}$,则sinA-cosA=$\frac{7}{5}$.

查看答案和解析>>

同步练习册答案