精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC=AC=AA1,CD⊥AC1,E、F分别是BB1、CC1中点.
(1)证明:平面DEF∥平面ABC;
(2)证明:CD⊥平面AEC1

【答案】分析:(1)由题意易证D为AC1的中点,进而可得以DF∥AC,DF∥平面ABC,同理可证EF∥平面ABC,由平面与平面平行的判定定理可得;(2)设AB=2,则DF=1,EF=2,∠DFE=∠ACB=60°,由余弦定理可得DE=,又可得CD=,CE==,故有CD2+DE2=CE2,由勾股定理可得CD⊥DE,又CD⊥AC1,由线面垂直的判定可得.
解答:(1)证明:由题意可知CA=CC1,又CD⊥AC1
由等腰三角形的性质可知D为AC1的中点,
又F为CC1的中点,所以DF∥AC,
又AC?平面ABC,所以DF∥平面ABC,
同理可证:EF∥平面ABC,又DF∩EF=F,
所以平面DEF∥平面ABC;
(2)设AB=2,则DF=1,EF=2,∠DFE=∠ACB=60°,
由余弦定理可得:DE2=12+22=3,∴DE=
∵CD为直角三角形ACC1斜边AC1的中线,
∴CD=,CE==
所以CD2+DE2=CE2,由勾股定理可得CD⊥DE,
又CD⊥AC1,AC1∩DE=D,所以CD⊥平面AEC1
点评:本题考查平面与平面平行的判定,直线与平面垂直的判定,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网在三棱柱ABC-A1B1C1中,侧面AA1B1B是边长为2的正方形,点C在平面AA1B1B上的射影H恰好为A1B的中点,且CH=
3
,设D为CC1中点,
(Ⅰ)求证:CC1⊥平面A1B1D;
(Ⅱ)求DH与平面AA1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网
如图(1)是一个水平放置的正三棱柱ABC-A1B1C1,D是棱BC的中点.正三棱柱的主视图如图(2).
(Ⅰ) 图(1)中垂直于平面BCC1B1的平面有哪几个?(直接写出符合要求的平面即可,不必说明或证明)
(Ⅱ)求正三棱柱ABC-A1B1C1的体积;
(Ⅲ)证明:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,∠BAC=30°,BC=1,AA1=
6
,M是棱CC1的中点,
(1)求证:A1B⊥AM;
(2)求直线AM与平面AA1B1B所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:在直三棱柱ABC-A1B1C1中,已知AB=A1A,AC=BC,点D、E分别为C1C、AB的中点,O为A1B与AB1的交点.
(Ⅰ)求证:EC∥平面A1BD;
(Ⅱ)求证:AB1⊥平面A1BD.

查看答案和解析>>

科目:高中数学 来源:湖北省部分重点中学2010届高三第一次联考 题型:解答题

 

        如图所示,在正三棱柱ABC—A11C1中,BB1=BC=2,且M是BC的中点,点N在CC1上。

 
   (1)试确定点N的位置,使AB1⊥MN;

   (2)当AB1⊥MN时,求二面角M—AB1—N的大小。

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案