精英家教网 > 高中数学 > 题目详情
若数列{an}中,若an随n的增大而增大,则称{an}为递增数列.设数列{an}是等比数列,则“a1<a2<a3”是{an}为递增数列的
充要
充要
条件.
分析:利用“a1<a2<a3”可得数列{an}是递增数列;当数列{an}是递增数列,则一定有a1<a2<a3,即可判断两个条件的关系.
解答:解:∵{an}是等比数列,
则由“a1<a2<a3”可得数列{an}是递增数列,故充分性成立.
若数列{an}是递增数列,则一定有a1<a2<a3,故必要性成立.
综上,“a1<a2<a3”是“数列{an}是递增数列”的充分必要条件,
故答案为:充要.
点评:本题考查充分条件、必要条件的定义,递增数列的定义,判断充分性是解题的难点,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、给定项数为m(m∈N*,m≥3)的数列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一个正整数k(2≤k≤m-1),若数列{an}中存在连续的k项和该数列中另一个连续的k项恰好按次序对应相等,则称数列{an}是“k阶可重复数列”,例如数列{an}:0,1,1,0,1,1,0.因为a1,a2,a3,a4与a4,a5,a6,a7按次序对应相等,所以数列{an}是“4阶可重复数列”.
(Ⅰ)分别判断下列数列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5阶可重复数列”?如果是,请写出重复的这5项;
(Ⅱ)若数为m的数列{an}一定是“3阶可重复数列”,则m的最小值是多少?说明理由;
(Ⅲ)假设数列{an}不是“5阶可重复数列”,若在其最后一项am后再添加一项0或1,均可使新数列是“5阶可重复数列”,且a4=1,求数列{an}的最后一项am的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数列{an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”.已知“积增数列”{an}中,a1=1,数列{an2+an+12}的前n项和为Sn,则对于任意的正整数n,有(  )
A、Sn≤2n2+3B、Sn≥n2+4nC、Sn≤n2+4nD、Sn≥n2+3n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

关于数列有下列四个判断:
①若a,b,c,d成等比数列,则a+b,b+c,c+d也成等比数列;
②若数列{an}是等比数列,则Sn,S2n-Sn,S3n-S2n…也成等比数列;
③若数列{an}既是等差数列也是等比数列,则{an}为常数列;
④数列{an}的前n项的和为Sn,且数学公式,则{an}为等差或等比数列;
⑤数列{an}为等差数列,且公差不为零,则数列{an}中不会有am=an(m≠n).
其中正确命题的序号是________.(请将正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省丽水中学高三(下)第一次月考数学试卷(理科)(解析版) 题型:选择题

若数列{an}对于任意的正整数n满足:an>0且anan+1=n+1,则称数列{an}为“积增数列”.已知“积增数列”{an}中,a1=1,数列{an2+an+12}的前n项和为Sn,则对于任意的正整数n,有( )
A.Sn≤2n2+3
B.Sn≥n2+4n
C.Sn≤n2+4n
D.Sn≥n2+3n

查看答案和解析>>

同步练习册答案