精英家教网 > 高中数学 > 题目详情
三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,  BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.
如图设设棱长为1,则,因为底面边长和侧棱长都相等,且所以,所以 ,,设异面直线的夹角为,所以.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图示,边长为4的正方形与正三角形所在平面互相垂直,M、Q分别是PC,AD的中点。

(1)求证:
(2)求多面体的体积
(3)试问:在线段AB上是否存在一点N,使面若存在,指出N的位置,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥中, 
(1)求证:平面⊥平面
(2)求直线PA与平面PBC所成角的正弦值;
(3)若动点M在底面三角形ABC上,二面角M-PA-C的余弦值为,求BM的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,已知三棱锥.

(1)求证:.
(2)求与平面所成的角.
(3)求二面角的平面角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,边长为1的正方形绕点逆时针旋转到正方形,图中阴影部分的面积为(    )
A.B.C.D.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有一个棱长为1的正方体,按任意方向正投影, 其投影面积的最大值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在一个正方体中,为正方形四边上的动点,为底面正方形的中心,分别为的中点,点为平面内一点,线段互相平分,则满足的实数的值有(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个棱柱为正四棱柱的条件是(  )
A.底面是正方形,有两个侧面垂直于底面
B.底面是正方形,有两个侧面是矩形
C.底面是菱形,且有一个顶点处的三条棱两两垂直
D.每个底面是全等的矩形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知A,B,C,D为四个不同的点,则它们能确定(  )个平面。

查看答案和解析>>

同步练习册答案