精英家教网 > 高中数学 > 题目详情

设偶函数f(x)=loga|x-b|在(-∞,0)上是增函数,则有


  1. A.
    f(a+1)≥f(b+2)
  2. B.
    f(a+1)<f(b+2)
  3. C.
    f(a+1)≤f(b+2)
  4. D.
    f(a+1)>f(b+2)
D
分析:由已知中偶函数f(x)=loga|x-b|在(-∞,0)上是增函数,根据偶函数的定义及复合函数单调性“同增异减”的原则,我们可以求出b值及a的范围,进而根据函数的单调性,得到答案.
解答:∵函数f(x)=loga|x-b|为偶函数
∴f(-x)=f(x)
即loga|-x-b|=loga|x-b|
则|-x-b|=|x-b|
故b=0
则f(x)=loga|x|
u=|x|在区间(-∞,0)上为减函数,在区间(0,+∞)上为增函数,
而函数f(x)在(-∞,0)上是增函数,
根据复合函数“同增异减”的原则,则函数y=logau为减函数
则0<a<1
则函数f(x)=loga|x-b|在0,+∞)上是减函数,
则1<a+1<2=b+2
故f(a+1)>f(b+2)
故选D
点评:本题考查的知识点是奇偶性与单调性的综合,对数函数的单调性与特殊点,其中根据偶函数及复合函数单调性“同增异减”的原则,求出b值及a的范围,及函数的单调性,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设偶函数f(x)=Asin(ωx+?)(A>0,ω>0,0<?<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=
1
2
,则f(
1
6
)
的值为
1
8
1
8

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南师大附中高三(上)11月月考数学试卷(理科)(解析版) 题型:填空题

设偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=,则的值为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省湖州中学高三(上)期中数学试卷(理科)(解析版) 题型:填空题

设偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=,则的值为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南师大附中高三(上)11月月考数学试卷(理科)(解析版) 题型:填空题

设偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=,则的值为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省湖州中学高三(上)期中数学试卷(理科)(解析版) 题型:填空题

设偶函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,0<ϕ<π)的部分图象如图所示,△KLM为等腰直角三角形(其中K,L为图象与x轴的交点,M为极小值点),∠KML=90°,KL=,则的值为   

查看答案和解析>>

同步练习册答案