精英家教网 > 高中数学 > 题目详情
已知集合A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2}.
(1)若A∪B=A,求实数m的取值;
(2)若A⊆∁RB,求实数m的取值范围.
考点:集合的包含关系判断及应用
专题:集合
分析:(1)由A∪B=A,得B⊆A,然后根据集合关系建立条件,即可求实数m的取值;
(2)根据条件A⊆∁RB,利用集合的基本运算,建立条件即可求实数m的取值范围.
解答: 解:(1)∵A={x|x2-2x-3≤0},B={x|m-2≤x≤m+2}.
∴A={x|x2-2x-3≤0}={x|m-1≤x≤3}.
∵A∪B=A,
∴B⊆A,
m-2≥-1
m+2≤3

m≥1
m≤1

即m=1.
(2)∵B={x|m-2≤x≤m+2}.
∴∁RB={x|x>m+2或x<m-2},
∵A⊆∁RB,
∴m-2>3或m+2<-1.
即m>5或m<-3,
即实数m的取值范围是m>5或m<-3.
点评:本题主要考查集合关系的应用,利用集合关系建立条件关系是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知空间四个点A(1,1,1),B(-4,0,2),C(-3,-1,0),D(-1,0,4),则直线AD与平面ABC所成的角为(  )
A、30°B、45°
C、60°D、90°

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
3x
+
1
x
20的展开式中,x的幂指数是整数的项共有(  )
A、3项B、4项C、5项D、6项

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:(x-1)2+(y-2)2=4,
(1)求过点P(3,4)的圆的切线方程;
(2)若过点Q(2,3)的直线与圆交于A,B两点,且点Q恰为弦AB的中点,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

动圆P过定点F(1,0)且与直线x=-1相切,圆心p的轨迹为曲线C,过F作曲线C两条互相垂直的弦AB,CD,设AB,CD的中点分别为M、N.
(1)求曲线C的方程;
(2)求证:直线MN必过定点;
(3)分别以AB、CD为直径作圆,求两圆相交弦中点H的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1+2a2+22a3+…+2n-1an=
n
2
,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=
1
log
1
2
an
cn=bnbn+1
,记Sn=c1+c2+…+cn,证明:Sn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=2x3-3(a+1)x2+6ax+8,其中a∈R.已知f(x)在x=3处取得极值.
(1)求f(x)的解析式;
(2)求f(x)在点A(1,16)处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地机动车驾照考试规定:每位考试者在一年内最多有3次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第三次为止,如果小王决定参加驾照考试,设他一年中三次参加考试通过的概率依次为0.6,0.7,0.8.
(Ⅰ)求小王在一年内领到驾照的概率;
(Ⅱ)求在一年内小王参加驾照考试次数ξ的分布列和ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+cosθ)2+(y-sinθ)2=1,直线l:y=kx,下面四个命题:
①对任意实数k与θ,直线l和圆M相切;
②对任意实数k与θ,直线l和圆M有公共点;
③对任意实数θ,一定存在实数k,使得直线l与和圆M相切;
④对任意实数k,一定存在实数θ,使得直线l与和圆M相切.
其中真命题的代号是
 
(写出所有真命题的代号).

查看答案和解析>>

同步练习册答案