精英家教网 > 高中数学 > 题目详情
设椭圆M:(a>b>0)的离心率与双曲线x2﹣y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=x+m交椭圆于A、B两点,椭圆上一点,求△PAB面积的最大值.
解:(1)双曲线的离心率为
则椭圆的离心率为
圆x2+y2=4的直径为4,则2a=4,
得:
所求椭圆M的方程为
(2)直线AB的直线方程:
,得

得﹣2<m<2

=
又P到AB的距离为.则

当且仅当取等号
.    
练习册系列答案
相关习题

科目:高中数学 来源:2008-2009学年湖北省天门中学高二(下)5月月考数学试卷(A卷)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证|AB|=
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省徐州七中高考数学模拟试卷(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(Ⅱ)求证|AB|=
(Ⅲ)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年河南省四校高三第二次联考数学试卷(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=x+m交椭圆于A、B两点,椭圆上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2011年山东省高考数学仿真押题试卷01(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率与双曲线x2-y2=1的离心率互为倒数,且内切于圆x2+y2=4.
(1)求椭圆M的方程;
(2)若直线y=x+m交椭圆于A、B两点,椭圆上一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源:2010年山东省高考数学模拟试卷1(文科)(解析版) 题型:解答题

设椭圆M:(a>b>0)的离心率为,长轴长为,设过右焦点F倾斜角为θ的直线交椭圆M于A,B两点.
(Ⅰ)求椭圆M的方程;
(2)设过右焦点F且与直线AB垂直的直线交椭圆M于C,D,求|AB|+|CD|的最小值.

查看答案和解析>>

同步练习册答案