精英家教网 > 高中数学 > 题目详情
已知a为实数,
1+2i
a+i
3
2
,则a=(  )
A、.1
B、
1
2
C、.
1
3
D、.-2
分析:化简复数的左侧部分为a+bi的形式,虚部为0,求出实部满足不等式的a的值即可.
解答:解:
1+2i
a+i
=
(1+2i)(a-i)
(a+i)(a-i)
=
a+2+(2a-1)i
a2+1

所以a=
1
2
1+2i
a+i
=
5
2
5
4
=2
3
2

故选B.
点评:本题考查复数的基本概念,实数能够比较大小,注意虚部为0时,实部的数值与
3
2
的比较.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a为实数,f(x)=x3-ax2-9x.
(1)求导数f'(x);
(2)若f'(-1)=0,求f(x)在[-1,1]上的最大值和最小值;
(3)若f(x)在[-1,1]上是递减的,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-3,(an-1>3)
4-an-1,(an-1≤3)

(Ⅰ)当a=100,时,求数列{an}的前100项的和S100
(Ⅱ)证明:对于数列{an},一定存在k∈N*,使0<ak≤3;
(Ⅲ)令bn=
an
2n-(-1)n
,当2<a<3时,求证:
n
i=1
bi
20+a
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,数列{an}满足a1=a,当n≥2时,an=
an-1-3     (an-1>3)
4-an-1    (an-1≤3)

(1)当a=100时,填写下列列表格:
n 2 3 35 100
an
(2)当a=100时,求数列{an}的前100项的和S100
(3)令bn=
an
(-2)n
Tn=b1+b2+…+bn
,求证:当1<a<
4
3
时,Tn
4-3a
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a为实数,p:点M(1,1)在圆(x+a)2+(y-a)2=4的内部; q:?x∈R,都有x2+ax+1≥0.
(1)若p为真命题,求a的取值范围;
(2)若q为假命题,求a的取值范围;
(3)若“p且q”为假命题,且“p或q”为真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案