ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÔòÏÂÁÐÃüÌ⣺
£¨1£©ÈôÊýÁÐ{an}ÊǵÝÔöÊýÁУ¬ÔòÊýÁÐ{Sn}Ò²ÊǵÝÔöÊýÁУ»
£¨2£©ÊýÁÐ{Sn}ÊǵÝÔöÊýÁеijäÒªÌõ¼þÊÇÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£»
£¨3£©Èô{an}ÊǵȲîÊýÁУ¨¹«²îd¡Ù0£©£¬ÔòS1•S2¡­Sk=0µÄ³äÒªÌõ¼þÊÇa1•a2¡­ak=0£®
£¨4£©Èô{an}ÊǵȱÈÊýÁУ¬ÔòS1•S2¡­Sk=0£¨k¡Ý2£¬k¡ÊN£©µÄ³äÒªÌõ¼þÊÇan+an+1=0£®
ÆäÖУ¬ÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£ºÀûÓõȲîÊýÁС¢µÈ±ÈÊýÁеĶ¨ÒåºÍÐÔÖÊ£¬ÊýÁеÄÇ°nÏîºÍµÄÒâÒ壬ͨ¹ý¾Ù·´Àý¿ÉµÃ£¨1£©¡¢£¨2£©¡¢£¨3£©²»ÕýÈ·£®¾­¹ý¼ìÑ飬ֻÓУ¨4£©ÕýÈ·£¬´Ó¶øµÃ³ö½áÂÛ£®
½â´ð£º½â£ºÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬¹Ê Sn =a1+a2+a3+¡­+an£¬
ÈôÊýÁÐ{an}ÊǵÝÔöÊýÁУ¬ÔòÊýÁÐ{Sn}²»Ò»¶¨ÊǵÝÔöÊýÁУ¬Èçµ±an£¼0 ʱ£¬ÊýÁÐ{Sn}ÊǵݼõÊýÁУ¬¹Ê£¨1£©²»ÕýÈ·£®
ÓÉÊýÁÐ{Sn}ÊǵÝÔöÊýÁУ¬²»ÄÜÍƳöÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÈçÊýÁУº0£¬1£¬2£¬3£¬¡­£¬
Âú×ã{Sn}ÊǵÝÔöÊýÁУ¬µ«²»Âú×ãÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬¹Ê£¨2£©²»ÕýÈ·£®
Èô{an}ÊǵȲîÊýÁУ¨¹«²îd¡Ù0£©£¬ÔòÓÉS1•S2¡­Sk=0²»ÄÜÍƳöa1•a2¡­ak=0£¬ÀýÈçÊýÁУº-3£¬-1£¬1£¬3£¬
Âú×ãS4=0£¬µ« a1•a2•a3•a4¡Ù0£¬¹Ê£¨3£©²»ÕýÈ·£®
Èô{an}ÊǵȱÈÊýÁУ¬ÔòÓÉS1•S2¡­Sk=0£¨k¡Ý2£¬k¡ÊN£©¿ÉµÃÊýÁеÄ{an}¹«±ÈΪ-1£¬¹ÊÓÐan+an+1=0£®
ÓÉan+an+1=0¿ÉµÃÊýÁеÄ{an}¹«±ÈΪ-1£¬¿ÉµÃS1•S2¡­Sk=0£¨k¡Ý2£¬k¡ÊN£©£¬¹Ê£¨4£©ÕýÈ·£®
¹ÊÑ¡B£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éµÈ²îÊýÁС¢µÈ±ÈÊýÁеĶ¨ÒåºÍÐÔÖÊ£¬ÊýÁеÄÇ°nÏîºÍµÄÒâÒ壬¾Ù·´ÀýÀ´ËµÃ÷ij¸öÃüÌâ²»ÕýÈ·£¬ÊÇÒ»ÖÖ¼òµ¥ÓÐЧµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµãP1£¨a1£¬b1£©£¬P2£¨a2£¬b2£©£¬¡­£¬Pn£¨an£¬bn£©£¨n¡ÊN*£©¶¼ÔÚº¯Êýy=log
12
x
µÄͼÏóÉÏ£®
£¨¢ñ£©ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬ÇóÖ¤ÊýÁÐ{an}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=1-2-n£¬¹ýµãPn£¬Pn+1µÄÖ±ÏßÓëÁ½×ø±êÖáËùΧ³ÉÈý½ÇÐÎÃæ»ýΪcn£¬Çóʹcn¡Üt¶Ôn¡ÊN*ºã³ÉÁ¢µÄʵÊýtµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÔÏÂÓÐËÄÖÖ˵·¨£º
£¨1£©Èôp¡ÅqΪÕ棬p¡ÄqΪ¼Ù£¬ÔòpÓëq±ØΪһÕæÒ»¼Ù£»
£¨2£©ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=n2+n+1£¬n¡ÊN*£¬Ôòan=2n£¬n¡ÊN*£»
£¨3£©Èôf¡ä£¨x0£©=0£¬Ôòf£¨x£©ÔÚx=x0´¦È¡µÃ¼«Öµ£»
£¨4£©ÓɱäÁ¿xºÍyµÄÊý¾ÝµÃµ½Æä»Ø¹éÖ±Ïß·½³Ìl£º 
y
=bx+a
£¬ÔòlÒ»¶¨¾­¹ýµãP(
.
x
£¬ 
.
y
)
£®
ÒÔÉÏËÄÖÖ˵·¨£¬ÆäÖÐÕýȷ˵·¨µÄÐòºÅΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÓÐ4Sn=an2+4n-1£¬n¡ÊN*£¬
£¨1£©Çóa1µÄÖµ£»
£¨2£©ÇóÖ¤£º(an-2)2-an-12=0(n¡Ý2)£»
£¨3£©Çó³öËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµã£¨x£¬y£©ÊÇÇøÓò
x+2y¡Ü2n
x¡Ý0
y¡Ý0
£¬£¨n¡ÊN*£©Äڵĵ㣬Ŀ±êº¯Êýz=x+y£¬zµÄ×î´óÖµ¼Ç×÷zn£®ÈôÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬a1=1£¬Çҵ㣨Sn£¬an£©ÔÚÖ±Ïßzn=x+yÉÏ£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ{an-2}ΪµÈ±ÈÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{Sn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸