精英家教网 > 高中数学 > 题目详情
(2010•上饶二模)设曲线f(x)=acosx+bsinx的一条对称轴为x=
π
5
,则曲线y=f(
π
10
-x)
的一个对称点为(  )
分析:由函数的解析式,求出函数的周期,求出函数的对称中心,利用函数的对称性以及函数图象的平移,求出曲线y=f(
π
10
-x)
的一个对称点即可.
解答:解:曲线f(x)=acosx+bsinx=
a2+b2
sin(x+θ),tanθ=
a
b

所以函数的周期为:2π.因为曲线f(x)=acosx+bsinx的一条对称轴为x=
π
5

所以函数的一个对称点为:(
π
5
-
π
2
,0
),即(-
10
,0
).
函数y=f(-x)的一个对称中心为(
10
,0
),
y=f(
π
10
-x)
的图象可以由函数y=f(-x)的图象向右平移
π
10
单位得到的,
所以曲线y=f(
π
10
-x)
的一个对称点为(
10
+
π
10
,0
),即(
5
,0)

故选B.
点评:本题是中档题,考查函数的周期,函数图象的对称性,图象的平移等知识,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•上饶二模)设函数f(x)=
x2+bx+c,(x≥0)
2,(x<0)
,若f(4)=f(0),f(2)=-2.则函数F(x)=f(|x|)-|x|的零点个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知x,y满足
x-y+6≥0
x+y≥0
x≤3
,若z=ax+y
的最大值为3a+9,最小值为3a-3.则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)已知椭圆
x2
4
+y2=1
的下顶点为A,点B是椭圆上的任意的一点,点C、D是直线x-y-4=0上的两点(C在D的下方),则
AB
CD
|
CD
|
的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)设函数f(x)=|-x2+2bx+c|,x∈[-1,1]的最大值为m.若m≥k对任意的b、c恒成立,则k的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•上饶二模)二项式(2
x
-
1
3x
)6展开式中的x-2
次项的系数是
1
1

查看答案和解析>>

同步练习册答案