精英家教网 > 高中数学 > 题目详情

记者在街上随机抽取10人,在一个月内接到的垃圾短信条数统计的茎叶图如下:

(Ⅰ)计算样本的平均数及方差;
(Ⅱ)现从10人中随机抽出2名,设选出者每月接到的垃圾短信在10条以下的人数为,求随机变量的分布列和期望.

(Ⅰ)17,(Ⅱ)

解析试题分析:(Ⅰ)先求平均数再求其方差。所用公式平均数,方差。(Ⅱ)10人中垃圾短信在10条以下的有2人,中随机抽出2名时随机变量的取值为0、1、2。此概率为古典概型,基本事件总数为。随机变量的基本事件数为,根据古典概型概率公式即可求其概率,然后可取其分布列及期望。
试题解析:解:(Ⅰ)样本的平均次数为.               3分
样本的方差为: 

(Ⅱ)由题意,随机变量.

随机变量的分布列为

 .              13分
考点:1古典概型概率,2分布列及方差。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某校校庆,各届校友纷至沓来,某班共来了n位校友(n>8且n∈N*),其中女校友6位,组委会对这n位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.
(1)若随机选出的2位校友代表为“最佳组合”的概率不小于,求n的最大值;
(2)当n=12时,设选出的2位校友代表中女校友人数为ξ,求ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

辽宁某大学对参加全运会的志愿者实施“社会教育实践”学分考核,因该批志愿者表现良好,该大学决定考核只有合格和优秀两个等次,若某志愿者考核为合格,授予0.5个学分;考核为优秀,授予1个学分,假设该校志愿者甲、乙、丙考核为优秀的概率分别为,他们考核所得的等次相互独立.
(1)求在这次考核中,志愿者甲、乙、丙三人中至少有一名考核为优秀的概率;
(2)记在这次考核中甲、乙、丙三名志愿者所得学分之和为随机变量X,求随机变量X的分布列.
(3)求X的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某班同学利用寒假进行社会实践,对年龄在的人群随机抽取人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
   
(1)补全频率分布直方图,并求的值;
(2)从年龄在的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

盒子中装有四张大小形状均相同的卡片,卡片上分别标有数其中是虚数单位.称“从盒中随机抽取一张,记下卡片上的数后并放回”为一次试验(设每次试验的结果互不影响).
(1)求事件 “在一次试验中,得到的数为虚数”的概率与事件 “在四次试验中,
至少有两次得到虚数” 的概率
(2)在两次试验中,记两次得到的数分别为,求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6, 且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.
(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;
(2)记表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某市市民对政府出台楼市限购令的态度,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令的赞成人数如下表:

月收入

[25,35)
[35,45)



频数
5
10
15
10
5
5
赞成人数
4
8
8
5
2
1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收人族”。
(Ⅰ)根据已知条件完成下面的2×2列联表,有多大的把握认为赞不赞成楼市限购令与收入高低有关?
已知:
<2.706时,没有充分的证据判定赞不赞成楼市限购令与收入高低有关;
>2.706时,有90%的把握判定赞不赞成楼市限购令与收入高低有关;
>3.841时,有95%的把握判定赞不赞成楼市限购令与收入高低有关;
>6.635时,有99%的把握判定赞不赞成楼市限购令与收入高低有关。
 
非高收入族
高收入族
总计
赞成
 
 
 
不赞成
 
 
 
总计
 
 
 
(Ⅱ)现从月收入在[55,65)的人群中随机抽取两人,求所抽取的两人中至少一人赞成楼市限购令的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)若分别表示将一枚质地均匀的骰子先后抛掷两次时第一次、第二次正面朝上出现的点数,求满足的概率.
(2)若在连续区间[1,6]上取值,求满足的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

小波以游戏方式决定参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为.若就参加学校合唱团,否则就参加学校排球队.

(I)求小波参加学校合唱团的概率;
(II)求的分布列和数学期望.

查看答案和解析>>

同步练习册答案