精英家教网 > 高中数学 > 题目详情
设椭圆的中心为原点O,一个焦点为F(0,1),长轴和短轴的长度之比为t

(1)求椭圆的方程;

(2)设经过原点且斜率为t的直线与椭圆在y轴右边部分的交点为Q、点P在该直线上,且,当t变化时,求点P的轨迹方程,并说明轨迹是什么图形.

答案:
解析:

解:(1)设所求方程为=1(a>b>0)

由题意得解得

所以椭圆的方程为

(2)设经过原点且斜率为t的直线与椭圆在y轴右边部分的交点为Qx1y1),Px,y

因为

所以

t>1,于是点P的轨迹方程为:

x2yx)和x2yx

P的轨迹为抛物线x2y在直线x=右侧的部分和抛物线x2y在直线x左侧的部分.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1做直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•金山区一模)设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1、F2,线段OF1、OF2的中点分别为B1、B2,且△AB1B2是面积为4的直角三角形.过B1作直线l交椭圆于P、Q两点.
(1)求该椭圆的标准方程;
(2)若PB2⊥QB2,求直线l的方程;
(3)设直线l与圆O:x2+y2=8相交于M、N两点,令|MN|的长度为t,若t∈[4,2
7
],求△B2PQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•重庆)如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.
(Ⅰ)求该椭圆的离心率和标准方程;
(Ⅱ)过B1作直线交椭圆于P,Q两点,使PB2⊥QB2,求△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省高三高考压轴理科数学试卷(解析版) 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1,F2,线段OF1,OF2的中点分别为B1,B2,且△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)过B1作直线l交椭圆于P,Q两点,使PB2⊥QB2,求直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届河南安阳一中高二第一次阶段测试数学试卷(奥数班)(解析版) 题型:解答题

如图,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左右焦点分别为,线段的中点分别为,且△ 是面积为4的直角三角形.

(Ⅰ)求该椭圆的离心率和标准方程;

(Ⅱ)过做直线交椭圆于P,Q两点,使,求直线的方程.

 

查看答案和解析>>

同步练习册答案