精英家教网 > 高中数学 > 题目详情
10.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则向量$\overrightarrow{BC}$为(  )
A.$\overrightarrow{a}$$+\overrightarrow{b}$B.$\overrightarrow{a}$$-\overrightarrow{b}$C.$\overrightarrow{b}$$-\overrightarrow{a}$D.-$\overrightarrow{b}$$-\overrightarrow{a}$

分析 直接利用向量的加减运算求解即可.

解答 解:$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则向量$\overrightarrow{BC}$=$\overrightarrow{AC}-\overrightarrow{AB}$=$\overrightarrow{b}-\overrightarrow{a}$.
故选:C

点评 本题考查向量的基本运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.若f(x)=xlnx,则f′(e)=(  )
A.0B.1C.2D.e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图所示,已知D,E分别是三棱锥V-ABC的两个侧面VAB,VBC的重心.
(1)证明:DE∥平面ABC;
(2)若该三棱锥的底面ABC是边长为2的正三角形,侧面是以4为腰长的等腰三角形,求三棱锥V-ABC的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.与向量$\overrightarrow{a}$=(2,2)方向相同的单位向量是(  )
A.($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{2}}{2}$)B.(1,1)C.(-1,-1)D.($\frac{1}{2}$,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线l和两条直线l1:x-3y+10=0,及l2:2x+y-8=0都相交,且这两个交点所成的线段的中点P(0,1),则直线l的方程是2x+3y-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:sin86°cos34°-cos86°sin214°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用五点作图法作出函数y=cos(2x-$\frac{π}{3}$),x∈[0,π]的图象,并写出其单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设正项数列{an}的前n项和为Sn,并且对于所有的正整数n,an与1的等差中项等于Sn与1的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式bn=ln(1+$\frac{1}{{a}_{n}}$),记Tn是{bn}的前n项和,试比较Tn与$\frac{1}{2}$lnan+1的大小并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=2013+ax+loga(1-x)(a>0且a≠1)的图象过定点,则该定点的坐标为(0,2014).

查看答案和解析>>

同步练习册答案