精英家教网 > 高中数学 > 题目详情
4.若a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx,则($\frac{x}{a}$+$\frac{1}{x}$+$\sqrt{2}$)4的展开式中常数项为$\frac{23}{2}$.

分析 求定积分可得a值,由二项式的知识可得.

解答 解:求定积分可得a=${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosxdx=sinx${|}_{-\frac{π}{2}}^{\frac{π}{2}}$=2,
∴($\frac{x}{a}$+$\frac{1}{x}$+$\sqrt{2}$)4=($\frac{x}{2}$+$\frac{1}{x}$+$\sqrt{2}$)4
故展开式中的常数项为${C}_{4}^{2}$•($\frac{x}{2}$)2•($\frac{1}{x}$)2+${C}_{4}^{2}$•$\frac{x}{2}$•$\frac{1}{x}$($\sqrt{2}$)2+${C}_{4}^{4}$($\sqrt{2}$)4=$\frac{3}{2}$+6+4=$\frac{23}{2}$
故答案为:$\frac{23}{2}$

点评 本题考查定积分的求解,涉及二项展开式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.某种商品的包装费y(元)与商品的重量x(千克)有如下函数关系:y=ax2+bx+64,其中x>0,当x=1千克时,y=52元,当x=6.5千克时,y取最小值
(1)若要使商品的包装费低于28元,求商品重量x的取值范围
(2)当x取何值时,平均每千克的包装费P最低,并求出P的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.曲线f(x)=$\frac{1}{2}$x2在点(1,$\frac{1}{2}$)处的切线方程为2x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=$\left\{\begin{array}{l}{1nx-ax+1,(x≥a)}\\{{e}^{x-1}+(a-2)x,(x<a)}\end{array}\right.$(a>0)
(1)若a=1,证明:y=f(x)在R上单调递减;
(2)当a>1时,讨论f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.将钟表上的时针作为角的始边,分针作为终边,那么当钟表上显示8点零5分时,求时针与分针构成的角度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求法向量为(1,-2)且与圆x2+y2-2y-4=0相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图.已知正方形ABCD与ADEF边长都为1,且平面ADEF⊥平面ABCD,G,H是DF,FC的中点.
(1)求异面直线AF与CE所成角的大小;
(2)求证:GH∥平面CDE.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在△ABC中,AB=$\sqrt{6}$+$\sqrt{2}$,BC=2$\sqrt{3}$,∠C=75°,则∠A=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线y=kx-1(k∈R)与圆(x-1)2+y2=4所截得的弦为AB,则|AB|的最小值是(  )
A.2$\sqrt{2}$B.2C.3D.4

查看答案和解析>>

同步练习册答案