精英家教网 > 高中数学 > 题目详情
如果双曲线
x2
a2
-
y2
b2
=1
右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是(  )
A.(1,2]B.(2,+∞)C.(1,2)D.[2,+∞)
设双曲线右支任意一点坐标为(x,y)则x≥a,
∵到右焦点的距离和到中心的距离相等,由两点间距离公式:x2+y2=(x-c)2+y2得x=
c
2

∵x≥a,∴
c
2
≥a,得e≥2,
又∵双曲线的离心率等于2时,右支上只有一个点即顶点到中心和右焦点的距离相等,所以不能等于2
故选B
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果双曲线
x2
a2
-
y2
b2
=1
右支上总存在到双曲线的中心与右焦点距离相等的两个相异点,则双曲线离心率的取值范围是(  )
A、(1,2]
B、(2,+∞)
C、(1,2)
D、[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点为A(2,0),一条渐近线为y=
1
2
x
,过点B(0,2)且斜率为k的直线l与该双曲线交于不同的两点P,Q.
(I)求双曲线的方程及k的取值范围;
(II)是否存在常数k,使得向量
OP
+
OQ
AB
垂直?如果存在,求k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果以原点为圆心的圆经过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的顶点,并且被直线x=
a2
c
(c为双曲线的半焦距)分为弧长为3:1的两段弧,则该双曲线的离心等于…(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•杨浦区二模)(理)设斜率为k1的直线L交椭圆C:
x2
2
+y2=1
于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
x2
a2
+
y2
b2
=1

(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>

同步练习册答案