精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)当数学公式时,求f(x)的单调递减区间;
(2)若当x>0时,f(x)>1恒成立,求a的取值范围;
(3)求证:数学公式

(1)解:当时,(x>-1)
令f′(x)<0,可得,∴f(x)的单调递减区间为…(4分)
(2)解:由得a>(x+2)-(x+2)ln(x+1)
记g(x)=(x+2)[1-ln(x+1)],则
当x>0时 g′(x)<0,∴g(x)在(0,+∞)递减
又g(0)=2•[1-ln1]=2,∴g(x)<2(x>0),∴a≥2…(8分)
(3)证明:由(Ⅱ)知 (x>0)

,即
…(12分)
分析:(1)求导数,利用导数小于0,即可求f(x)的单调递减区间;
(2)由得a>(x+2)-(x+2)ln(x+1),记g(x)=(x+2)[1-ln(x+1)],确定函数的最值,即可求a的取值范围;
(3)先证明,取,即可证得结论.
点评:本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本题满分12分)

已知函数

   (1):当时,求函数的极小值;

   (2):试讨论函数零点的个数。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年福建省福州市高三毕业班质检理科数学试卷(解析版) 题型:解答题

已知函数.

1)当时,求函数的单调递增区间;

2)设的内角的对应边分别为,且若向量与向量共线,求的值.

 

查看答案和解析>>

科目:高中数学 来源:2014届广东省东莞市第三次月考高一数学试卷(解析版) 题型:解答题

已知函数 

(1)当时,求函数的最大值和最小值;

(2)求实数的取值范围,使在区间上是单调减函数

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省高三下学期假期检测文科数学试卷 题型:解答题

已知函数.().

  (1)当时,求函数的极值;

(2)若对,有成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省高三上学期第二次教学质量检测文科数学卷 题型:解答题

已知函数

(1)当时,求的极小值;

(2)设,求的最大值

 

查看答案和解析>>

同步练习册答案