精英家教网 > 高中数学 > 题目详情
19.已知数列{an}的前n项和记为Sn,若a2=a+2(a为常数),且Sn是nan与na的等差中项.
(1)求a1,a3,a4
(2)猜想出an的表达式,并用数学归纳法进行证明.

分析 (1)利用数列递推式,代入计算可得结论;
(2)利用(1)的结论,猜想an的表达式,再用数学归纳法证明.

解答 解:(1)由已知得${S_n}=\frac{{n{a_n}+na}}{2}=\frac{{{a_n}+a}}{2}•n$,
当n=1时,${a_1}={S_1}=\frac{{{a_1}+a}}{2}$,则a1=a,${S_3}={a_1}+{a_2}+{a_3}=\frac{{{a_3}+a}}{2}•3$,而a2=a+2,
于是可解得a3=a+4;同理可解得a4=a+6.
(2)由(1)中的a1=a,a2=a+2,a3=a+4,a4=a+6,…,
猜测出an=a+2(n-1).
数学归纳法证明如下:
①当n=1时,a1=a=a+2(1-1),猜想成立;
当n=2时,a2=a+2=a+2(2-1),猜想也成立.
②假设当n=k(k∈N*,k≥2)时猜想成立,即ak=a+2(k-1),
则当n=k+1时,${a_{k+1}}={S_{k+1}}-{S_k}=\frac{{{a_{k+1}}+a}}{2}•(k+1)-$$\frac{{{a_k}+a}}{2}•k$,
即(k-1)ak+1=kak-a,
由k≥2可得${a_{k+1}}=\frac{{k{a_k}-a}}{k-1}=\frac{ka+2k(k-1)-a}{k-1}$,
即ak+1=a+2k=a+2[(k+1)-1],
也就是说,当n=k+1时猜想也成立.
由①、②可知对任意的n∈N*,an=a+2(n-1)都成立.

点评 本题考查数列递推式,考查数列的通项,考查数学归纳法,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知集合A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁UB)=(  )
A.(-∞,1]∪[2,+∞)B.[1,2]C.[0,1]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知两数列{an},{bn}满足${b_n}=1+{3^n}{a_n}$(n∈N*),3b1=10a1,其中{an}是公差大于零的等差数列,且a2,a7,b2-1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a=2${\;}^{\frac{3}{2}}$,b=log20.3,c=0.82,则a,b,c的大小关系为(  )
A.c<b<aB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.关于函数f(x)=2sin(2x-$\frac{π}{6}$)(x∈R)有下列命题:
(1)有f(x1)=f(x2)=0可得x1-x2是π的整数倍;
(2)表达式可改写为f(x)=2cos(2x-$\frac{2π}{3}$)
(3)函数的图象关于点($\frac{π}{3}$,0)对称;
(4)函数的图象关于直线x=-$\frac{π}{6}$对称;
其中正确的命题序号是(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.定义:区间[c,d](c<d)的长度为d-c.已知函数y=|log2x|的定义域为[a,b],值域为[0,2],则区间[a,b]长度的最大值与最小值的差等于3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={t|函数f(x)=lg[(t+2)x2+2x+1]的值域为R},B={x|(ax-1)(x+a)>0}
(1)求集合A;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)的图象如图所示,则f(x)的解析式是(  )
A.f(x)=-|x|-1B.f(x)=|x-1|C.f(x)=-|x|+1D.f(x)=|x+1|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设函数f(x)=lnx+x2-2ax+a2,a∈R.
(1)当a=2时,求函数f(x)的单调区间;
(2)若函数f(x)在[1,3]上不存在单调增区间,求a的取值范围.

查看答案和解析>>

同步练习册答案