精英家教网 > 高中数学 > 题目详情
设定义在上的函数,满足当时, ,且对任意,有,
(1)解不等式
(2)解方程
(1)先证,且单调递增,;(2) .

试题分析:(1)先证,且单调递增,
因为,,
所以.

假设存在某个,使
与已知矛盾,故
任取,则,,
所以=
= =.
所以时,为增函数. 解得:
(2),, ,原方程可化为:,
解得(舍)
点评:难题,涉及抽象不等式解法问题,往往利用函数的奇偶性、单调性,将抽象问题转化成具体不等式组求解,要注意函数的定义域。抽象函数问题,往往利用“赋值法”,通过给自变量“赋值”,发现结论,应用于解题。本题较难,构造结构形式,应用已知条件,是解答本题的一大难点。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为常数, ,函数的图象与坐标轴交点处的切线为,函数的图象与直线交点处的切线为,且
(Ⅰ)若对任意的,不等式成立,求实数的取值范围.
(Ⅱ)对于函数公共定义域内的任意实数。我们把 的值称为两函数在处的偏差。求证:函数在其公共定义域的所有偏差都大于2.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则的值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数在[3,4]上至少有一个零点,求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是不为零的实数,为自然对数的底数).
(1)若曲线有公共点,且在它们的某一公共点处有共同的切线,求k的值;
(2)若函数在区间内单调递减,求此时k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数.满足,则的值为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)在定义域D内某区间I上是增函数,且在I上是减函数,则称y=f(x)在I 上是“弱增函数”.已知函数h(x)=x2-(b-1)x+b在(0,1]上是“弱增函数”,则实数b的值为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的单调区间;
(2)当时,函数恒成立,求实数的取值范围;
(3)设正实数满足.求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案