【题目】已知以点C(t, )(t∈R,t≠0)为圆心的圆过原点O.
(1)设直线3x+y﹣4=0与圆C交于点M、N,若|OM|=|ON|,求圆C的方程;
(2)在(1)的条件下,设B(0,2),且P、Q分别是直线l:x+y+2=0和圆C上的动点,求|PQ|﹣|PB|的最大值及此时点P的坐标.
【答案】
(1)解:∵OM=ON,所以,则原点O在MN的中垂线上.
设MN的中点为H,则CH⊥MN,
∴C、H、O三点共线,
∵直线MN的方程是3x+y﹣4=0,
∴直线OC的斜率 = = ,解得t=3或t=﹣3,
∴圆心为C(3,1)或C(﹣3,﹣1)
∴圆C的方程为(x﹣3)2+(y﹣1)2=10或(x+3)2+(y+1)2=10
由于当圆方程为(x+3)2+(y+1)2=10时,圆心到直线3x+y﹣4=0的距离d>r,
此时不满足直线与圆相交,故舍去,
∴圆C的方程为(x﹣3)2+(y﹣1)2=10
(2)解:在三角形PBQ中,两边之差小于第三边,故|PQ|﹣|PB|≤|BQ|
又B,C,Q三点共线时|BQ|最大
所以,|PQ|﹣|PB|的最大值为 ,
∵B(0,2),C(3,1),∴直线BC的方程为 ,
∴直线BC与直线x+y+2=0的交点P的坐标为(﹣6,4)
【解析】(1)由OM=ON得原点O在MN的中垂线上,由圆的弦中点性质和直线垂直的条件列出方程,求出t的值和C的坐标,代入圆的标准方程化简,再验证直线与圆的位置关系;(2)根据三边关系判断出取最大值的条件,由圆外一点与圆上一点距离最值问题求出最大值,由点斜式方程求出BC的直线方程,以及此时点P的坐标.
科目:高中数学 来源: 题型:
【题目】【2017河北唐山二模】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017镇江一模20】已知函数,(为常数).
(1)若函数与函数在处有相同的切线,求实数的值;
(2)若,且,证明:;
(3)若对任意,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数h(x)=2sin(2x+ )的图象向右平移 个单位,再向上平移2个单位,得到函数f(x)的图象,则函数f(x)的图象( )
A.关于直线x=0对称
B.关于直线x=π对称
C.关于点( ,0)对称
D.关于点( ,2)对称
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2017年第二次全国大联考江苏卷】若无穷数列满足:恒等于常数,则称具有局部等差数列.
(1)若具有局部等差数列,且,求;
(2)若无穷数列是等差数列,无穷数列是公比为正数的等比数列,,,,判断是否具有局部等差数列,并说明理由;
(3)设既具有局部等差数列,又具有局部等差数列,求证:具有局部等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016-2017学年度苏锡常镇四市高三教学情况调研(二)】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).
(1)求利润函数的函数关系式,并写出定义域;
(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= .
(1)设函数g(x)=f(x)﹣1,求函数g(x)的零点;
(2)若函数f(x1)=f(x2)=f(x3)=f(x4),且0<x1<x2<x3<x4≤10,求 的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com