精英家教网 > 高中数学 > 题目详情
8.已知tanα=2,则$\frac{1+2sinαcosα}{{{{sin}^2}α-{{cos}^2}α}}$的值是(  )
A.$\frac{1}{3}$B.3C.-$\frac{1}{3}$D.-3

分析 利用三角函数的基本关系式将1写成α的正弦、余弦平方和的形式,然后利用商数关系化为tanα的代数式,代入求值.

解答 解:原式=$\frac{si{n}^{2}α+co{s}^{2}α+2sinαcosα}{si{n}^{2}α-co{s}^{2}α}$=$\frac{ta{n}^{2}α+1+2tanα}{ta{n}^{2}α-1}$=$\frac{4+1+2×2}{4-1}=3$;
故选:B.

点评 本题考查了三角函数的基本关系式的运用化简三角函数式;熟练运用基本关系式是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一船向正北方向航行,看见它的正西方向有相距10海里的两个灯塔恰好与它在一条直线上.船继续航行半小时后,看见这两个灯塔恰好与它在一条直线上.船继续航行半个小时后,看见这两个灯塔中,一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时(  )
A.5$\sqrt{2}$海里B.5 海里C.10$\sqrt{2}$海里D.10海里

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am、an,使得aman=16a12,则$\frac{1}{m}$+$\frac{9}{n}$的最小值为(  )
A.$\frac{3}{2}$B.$\frac{8}{3}$C.$\frac{11}{4}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知tan$\frac{α}{2}$=2,求值:
(1)tan(α+$\frac{π}{4}$);
(2)$\frac{6sinα+cosα}{3sinα-2cosα}$;
(3)sin2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.某数学老师身高175cm,他爷爷、父亲和儿子的身高分别是172cm、169cm、和181cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为184cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)(x∈R)满足f(1)=1,f′(1)=1,f′(x)<$\frac{1}{2}$,f(x2)<$\frac{1}{2}$x2+$\frac{1}{2}$.
A.(-∞.-1)B.(1,+∞)C.(-∞,-1)∪(1,+∞)D.(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设f(x)=x2+ax+3,不等式f(x)≥a对x∈R恒成立,则实数a的取值范围为-6≤a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=3cos($\frac{2}{5}$x-$\frac{π}{6}$)的最小正周期是(  )
A.$\frac{2\;π}{5}$B.$\frac{5\;π}{2}$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=|x2-1|+x2+kx
(Ⅰ)若k=-2,解不等式f(x)>0;
(Ⅱ)若关于x的方程f(x)=0在(0,2)上有两个解x1,x2,求实数k的取值范围.

查看答案和解析>>

同步练习册答案