精英家教网 > 高中数学 > 题目详情

有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,

0.8,0.9.

(1)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;

(2)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率;

(3)若四名运动员每两人之间进行一场比赛,设甲获胜场次为,求随机变量的概率分布.

(1)0.432(2)0.444(3)随机变量的概率分布为

0

1

2

3

P

0.008

0.116

0.444

0.432


解析:

(1)甲和乙之间进行三场比赛,甲恰好胜两场的概率为P=×0.62×0.4=0.432.

(2)记“甲胜乙”,“甲胜丙”,“甲胜丁”三个事件分别为A,B,C,则P(A)=0.6,P(B)=0.8,P(C)=0.9.

则四名运动员每两人之间进行一场比赛,甲恰好胜两场的概率为

P(AB+AC+BC)

=P(A)P(B)[1-P(C)]+P(A)[1-P(B)]P(C)+[1-P(A)]P(B)P(C)

=0.6×0.8×0.1+0.6×0.2×0.9+0.4×0.8×0.9

=0.444.

(3)随机变量的可能取值为0,1,2,3.

P(=0)=0.4×0.2×0.1=0.008;

P(=1)=0.6×0.2×0.1+0.4×0.8×0.1+0.4×0.2×0.9=0.116;

由(2)得P(=2)=0.444;

P(=3)=0.6×0.8×0.9=0.432.

∴随机变量的概率分布为

0

1

2

3

P

0.008

0.116

0.444

0.432

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,0.8,0.9.
(Ⅰ)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;
(Ⅱ)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率;
(Ⅲ)若四名运动员每两人之间进行一场比赛,设甲获胜场次为ξ,求随机变量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙、丙、丁四名网球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,0.8,0.9.
(Ⅰ)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;
(Ⅱ)若四名运动员每两人之间进行一场比赛,求甲恰好胜两场的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙、丙、丁四名深圳大运会志愿者被随机地分到A,B,C三个不同的岗位服务,若A岗位需要两名志愿者,B,C岗位各需要一名志愿者.甲、乙两人同时不参加A岗位服务的概率是
5
6
5
6
;甲不在A岗位,乙不在B岗位,丙不在C岗位,这样安排服务的概率是
1
3
1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙、丙、丁四名乒乓球运动员,通过对过去战绩的统计,在一场比赛中,甲对乙、丙、丁取胜的概率分别为0.6,0.8,0.9.

    (1)若甲和乙之间进行三场比赛,求甲恰好胜两场的概率;

    (2)若四名运动员每两人之间进行一场比赛,设甲获胜场次为,求随机变量的分布列及数学期望

查看答案和解析>>

同步练习册答案