精英家教网 > 高中数学 > 题目详情
已知a>b>c>0,则a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
的最小值为(  )
A、4B、6C、8D、10
考点:基本不等式
专题:不等式的解法及应用
分析:利用基本不等式的性质可得
1
a2
[bc+a(a-b)+b(a-c)]
[
1
bc
+
1
a(a-b)
+
1
b(a-c)
]
9
a2
,再利用基本不等式的性质即可得出.
解答: 解:∵a>b>c>0,
1
a2
[bc+a(a-b)+b(a-c)]
[
1
bc
+
1
a(a-b)
+
1
b(a-c)
]
1
a2
×3
3bca(a-b)b(a-c)
•3
3
1
bca(a-b)b(a-c)
=
9
a2

a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
a2+
9
a2
=6,当且仅当2a=3b=4c=2
3
时取等号.
a2+
1
bc
+
1
a(a-b)
+
1
b(a-c)
的最小值为6.
故选:B.
点评:本题考查了基本不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M≥0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的一个上界.已知函数f(x)=
ex
a
+
a
ex
,g(x)=log2
3+ax
x+3
.其中a<0
(1)若函数f(x)为偶函数,求实数a的值;
(2)在(1)的条件下,求函数g(x)在区间[-1,1]上的所有上界构成的集合;
(3)在(1)的条件下,是否存在这样的负实数k,使g(k-cosθ)+g(cos2θ-k2)≥0
对一切θ∈R恒成立,若存在,试求出k取值的集合;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

直角坐标系xOy中,曲线C的参数方程为
x=
6
cosθ
y=
2
sinθ
(θ为参数),直线l的参数方程为
x=
3
2
t
y=2-
1
2
t
(t为参数),T为直线l与曲线C的公共点.以原点O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求点T的极坐标;
(2)P是曲线C上的一点,求P到直线l的距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-alnx,a∈R.
(Ⅰ) 讨论函数f(x)的单调性.
(Ⅱ)若f(x)在[1,+∞)上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果变量x,y满足条件
x-2y+4≤0
x+2y-8≤0
x≥0
且z=3x+y,那么z的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x≥1
x-y≤0
x+y-4≤0
,若目标函数z=ax+y取最大值时最优解不唯一,则a的值为(  )
A、-1B、0C、-1或1D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x2+y2-4x-2y-4=0,求
2x+3y+3
x+3
的最大值(  )
A、2
B、
17
4
C、
29
5
D、
13
4
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知l1:x+2y+1=0,l2:Ax+By+2=0(A,B∈{1,2,3,4}),则直线l1与l2不平行的概率为(  )
A、
15
16
B、
11
12
C、
5
6
D、
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个球的体积为
9
2
π,则该球的表面积为(  )
A、
2
3
π
B、
9
2
π
C、18π
D、9π

查看答案和解析>>

同步练习册答案