精英家教网 > 高中数学 > 题目详情
11.已知等差数列{an}前9项的和为27,a10=8,则a100=(  )
A.97B.98C.99D.100

分析 根据已知可得a5=3,进而求出公差,可得答案.

解答 解:∵等差数列{an}前9项的和为27,
∴9a5=27,a5=3,
又∵a10=8,
∴d=1,
∴a100=a5+95d=98,
故选:B.

点评 本题考查的知识点是数列的性质,熟练掌握等差数列的性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.y=tanx的导数是(  )
A.$\frac{1}{{{{cos}^2}x}}$B.$-\frac{1}{{{{cos}^2}x}}$C.$\frac{cos2x}{{{{cos}^2}x}}$D.$-\frac{cos2x}{{{{cos}^2}x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在直角坐标系xOy中,曲线C1的点均在C2:x2+(y-5)2=9外,且对C1上任意一点M,M到直线y=-2的距离等于该点与圆C2上点的距离的最小值.
(1)求曲线C1的方程;
(2)设P(x0,y0)(x0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别与曲线C1相交于点A,B和C,D.证明:当P在直线y=-4上运动时,四点A,B,C,D的横坐标之积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数$y=\frac{{\sqrt{3x+4}}}{x}$的定义域为{x|x≥-$\frac{4}{3}$且x≠0}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知F1、F2是椭圆C1:$\frac{{x}^{2}}{4}$+y2=1与双曲线C2的两个公共焦点,P是C1,C2一个公共点.若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,则C2的离心率是$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(3b-c)cosA-acosC=0.
(1)求cosA;
(2)若a=2$\sqrt{3}$,△ABC的面积S△ABC=3$\sqrt{2}$,试判断△ABC的形状,并说明理由;
(3)若sinBsinC=$\frac{2}{3}$,求tanA+tanB+tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若将θ视为变量,则以原点为圆心,r为半径的圆可表示为$\left\{\begin{array}{l}{x=rcosθ}\\{y=rsinθ}\end{array}\right.$(θ∈[0,2π)),问下列何种表示可表示以(a,b)为圆心,r为半径的圆(  )
A.$\left\{\begin{array}{l}{x=rcosθ-a}\\{y=rsinθ-b}\end{array}\right.$(θ∈[0,2π))B.$\left\{\begin{array}{l}{x=rcosθ+a}\\{y=rsinθ+b}\end{array}\right.$(θ∈[0,2π))
C.$\left\{\begin{array}{l}{x=-rcosθ-a}\\{y=-rsinθ-b}\end{array}\right.$(θ∈[0,2π))D.$\left\{\begin{array}{l}{x=rsinθ-a}\\{y=rcosθ-b}\end{array}\right.$(θ∈[0,2π))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={y|y=$\sqrt{{x}^{2}-1}$},B={x|y=lg(x-2x2)},则A∩B=(  )
A.[1,+∞)B.[$\frac{1}{2}$,+∞)C.($\frac{1}{2}$,1)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线1:ax+by+1=0(a>0,b>0)把圆C:(x+4)2+(y+1)2=16分成面积相等的两部分,则当ab取得最大值时,坐标原点到直线1的距离是(  )
A.4B.8$\sqrt{17}$C.2D.$\frac{8\sqrt{17}}{17}$

查看答案和解析>>

同步练习册答案