(本小题满分13分)
已知定义在R上的函数(a,b,c,d为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明:对任意∈[-1,1],不等式成立;
(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.
(1)(2)见解析(3)(-∞,1]
(Ⅰ)因为f(x)的图象关于原点对称,则f(x)为奇函数,所以f(0)=0,即d=0.(1分)
又,即,则b=0.
所以,. (2分)
因为当x=1时f(x)取得极值,则,且.
即,故. (4分)
(Ⅱ)因为,则当-1≤x≤1时,.
所以f(x)在[-1,1]上是减函数. (5分)
所以当x∈[-1,1]时,,. (7分)
故当∈[-1,1]时,. (8分)
(Ⅲ)因为,则,. (9分)
由,得,即,即.
所以在区间上是增函数,在上是减函数,从而在处取极小值. (11分)
又,若函数在区间(1,∞)内无零点,则,
所以,即m≤1.
故实数m的取值范围是(-∞,1].
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com