精英家教网 > 高中数学 > 题目详情

数列{an} 满足a1=2,数学公式(n∈N+).
(Ⅰ)设bn=数学公式,求数列{bn}的通项公式bn
(Ⅱ)设cn=数学公式,数列{cn}的前n项和为Sn,求证:数学公式

解:(Ⅰ)∵(n∈N+),

∵bn=,a1=2,





∴bn=b1+(b2-b1)+(b3-b2)+…+(bn-bn-1
=1+(1+)+(2+)+…+(n-1+
=1++=
(Ⅱ)∵,bn=
=
∴cn==
=
=
=

=+
=
递减,
∴0<


分析:(Ⅰ)由(n∈N+),知,由bn=,a1=2,知,…,,由累加法能求出数列{bn}的通项公式bn
(Ⅱ)由,bn=,知=,故cn===,故Sn=,由此能证明
点评:本题考查数列、不等式知识,考查化归与转化、分类与整合的数学思想,综合性强,难度大,有一定的探索性,对数学思维能力要求较高,是高考的重点.解题时要注意培养学生的抽象概括能力、推理论证能力、运算求解能力和创新意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

数列{an}满足a 1=
3
2
,a n+1=
a
2
n
-an+1
(n∈N*),则m=
1
a1
+
1
a2
+
1
a3
+…+
1
a2012
的整数部分是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}满足
a
 
1
=P(0<P<1),且
a
 
n+1
=
a
 
n
a
 
n
+1

(1)求数列的通项an
(2)求证:
a
 
1
2
+
a
 
2
3
+
a
 
3
4
+…+
a
 
n
n+1
<1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•三明模拟)若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于
1
m
,那么正数m的最小取值是(  )

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市安福中学高一(下)第二次月考数学试卷(课改班)(解析版) 题型:选择题

数列{an}满足a,a(n∈N*),则m=的整数部分是( )
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中数学 来源:2013年福建省三明市高三质量检查数学试卷(解析版) 题型:选择题

若数列{an}满足a≤an≤b,其中a、b是常数,则称数列{an}为有界数列,a是数列{an}的下界,b是数列{an}的上界.现要在区间[-1,2)中取出20个数构成有界数列{bn},并使数列{bn}有且仅有两项差的绝对值小于,那么正数m的最小取值是( )
A.5
B.
C.7
D.

查看答案和解析>>

同步练习册答案