精英家教网 > 高中数学 > 题目详情
15.设P表示x+$\frac{4}{x+1}$>4的解集;Q表示不等式|x-1|+|x-2a|>1对任意x∈R恒成立的a的集合,求P∩Q.

分析 由已知得P=(-1,0)∪(3,+∞),Q=(-∞,0)∪(1,+∞),由此能求出P∩Q.

解答 解:P表示x+$\frac{4}{x+1}$>4的解集,即x(x-3)(x+1)>0,P=(-1,0)∪(3,+∞),
又不等式|x-1|+|x-2a|>1对任意x∈R恒成立,
∴a<0或a>1,即Q=(-∞,0)∪(1,+∞),
∴P∩Q=(-1,0)∪(3,+∞).

点评 本题考查交集的求法,是基础题,解题时要注意不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知点G为△ABC的重心,过G作直线与AB,AC两边分别交于M,N两点,且$\overrightarrow{AM}=x\overrightarrow{AB},\overrightarrow{AN}=y\overrightarrow{AC}$,x,y∈R+,则x+y的最小值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若椭圆的一个短轴端点与两个焦点构成正三角形,则该椭圆的离心率是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.以上都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线x=ay2(a≠0)的准线方程是$x=-\frac{1}{4a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$\lim_{n→∞}\frac{{1+\frac{1}{3}+\frac{1}{9}+…+\frac{1}{3^n}}}{{1+\frac{1}{2}+\frac{1}{4}+…+\frac{1}{2^n}}}$=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q,是线段PM延长线上的一点,且PM=MQ,求点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知${log_4}(3a+4b)={log_2}\sqrt{2ab}$,则a+b的最小值为$\frac{7+4\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=asinx-bcosx(a,b为常数,a≠0,x∈R)在x=$\frac{π}{4}$处取得最大值,则函数y=f(x+$\frac{π}{4}$)是(  )
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点($\frac{3π}{2}$,0)对称
C.奇函数且它的图象关于点($\frac{3π}{2}$,0)对称
D.偶函数且它的图象关于点(π,0)对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)为奇函数且在(-∞,0)上单调递减,f(-2)=0,则xf(x)>0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,-2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

同步练习册答案