精英家教网 > 高中数学 > 题目详情
15.在自然界中存在着大量的周期函数,比如声波.若两个声波随时间的变化规律分别为:y1=3$\sqrt{2}$sin(100πt),y2=3cos(100πt+$\frac{π}{4}$),则这两个声波合成后(即y=y1+y2)的声波的振幅为(  )
A.$6\sqrt{2}$B.$3+3\sqrt{2}$C.$3\sqrt{2}$D.3

分析 利用和差化积公式即可得出.

解答 解:y=y1+y2=3$\sqrt{2}$sin(100πt)+3cos(100πt+$\frac{π}{4}$)
=3$\sqrt{2}$sin(100πt)+3×$\frac{\sqrt{2}}{2}$[cos(100πt)-sin(100πt)]
=3×$\frac{\sqrt{2}}{2}$[cos(100πt)+sin(100πt)]
=3sin(100πt+$\frac{π}{4}$),
则这两个声波合成后(即y=y1+y2)的声波的振幅为3.
故选:D.

点评 本题考查了和差化积公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求证:平面PAD⊥平面ABCD
(Ⅱ)若E为PD的中点,求证:CE∥平面PAB
(Ⅲ)若DC与平面PAB所成的角为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x-1)=2x-$\sqrt{x}$,则f(3)=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.计算:sin(-$\frac{16π}{3}$)=$\frac{\sqrt{3}}{2}$,cos(-$\frac{8π}{3}$)=$-\frac{1}{2}$,tan(-$\frac{17}{4}$π)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,⊙O与x轴的正半轴交点为A,点B,C在⊙O上,且B($\frac{4}{5}$,-$\frac{3}{5}$),点C在第一象限,∠AOC=α,BC=1,则cos($\frac{5π}{6}$-α)=(  )
A.-$\frac{4}{5}$B.-$\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=log3(2x-1)的零点是(  )
A.1B.2C.(1,0)D.(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设全集R,A={x|2<x≤6},B={x|3<x<8},C={x|a-1<x<2a}.
(1)求∁R(A∩B);
(2)若B∩C=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.平面内动点P(x,y)与两定点A(-2,0)、B(2,0)连线的斜率之积等于-$\frac{1}{3}$,若点P的轨迹为曲线E,过点Q(-1,0)作斜率不为零的直线CD交曲线E于C、D两点
(Ⅰ)求曲线E的方程
(Ⅱ)求证:AC⊥AD
(Ⅲ)求四边形ACOD面积的最大值(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.三棱锥A-BCD的所有棱长均为6,点P在AC上,且AP=2PC,过P作四面体的截面,使截面平行于直线AB和CD,则该截面的周长为(  )
A.16B.12C.10D.8

查看答案和解析>>

同步练习册答案