精英家教网 > 高中数学 > 题目详情
如图所示,一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个直径为2的圆,那么这个几何体的内接长方体的最大体积为
4
4
分析:根据题意,该几何体是底面直径与高都等于2的圆柱,内接长方体的高等于2,底面是圆柱底面圆的内接矩形.利用圆内接矩形的性质与基本不等式,算出当矩形的两边长都为
2
时,底面矩形有最大面积2,由此可得该几何体的内接长方体的最大体积.
解答:解:根据题中的三视图,可得该几何体是底面直径与高都等于2的圆柱,
几何体的内接长方体的高等于圆柱的高,底面矩形是圆柱底面圆的内接矩形,
由于圆柱的高为定值2,可得当底面矩形面积最大时,内接长方体的体积有最大值.
设长方体的底面矩形的一边长为x,则另一边长为
22-x2
=
4-x2

∴矩形的面积S=x
4-x2
=
x2•(4-x2)
1
2
[x2+(4-x2)]=2,
当且仅当x2=4-x2即x=
2
时,等号成立.因此矩形的两边长都为
2
时,矩形有最大面积2,
可得内接长方体的最大体积为Vmax=smax×h=2×2=4
故答案为:4
点评:本题给出圆柱的三视图的形状,求圆柱内接长方体的最大体积.着重考查了柱体的体积公式、三视图的认识、圆内接矩形的性质和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知一个空间几合体的三视图如下图所示,根据图中标出的尺寸(单位: cm),可得到这个几何体的体积是_______________

查看答案和解析>>

科目:高中数学 来源:黑龙江省哈六中2010届高三第二次模拟考试(理) 题型:选择题

 己知一个空间几何体的三视图如图所示,其中正

视图、侧视图都是由半圆和矩形组成,根据图中

标出的尺寸,可得这个几

何体的体积是(  )

(A)       (B)

(C)       (D)

 

查看答案和解析>>

同步练习册答案