精英家教网 > 高中数学 > 题目详情
已知椭圆E的焦点在x轴上,离心率为
1
2
,对称轴为坐标轴,且经过点(1,
3
2
)

(I)求椭圆E的方程;
(II)直线y=kx-2与椭圆E相交于A、B两点,O为原点,在OA、OB上分别存在异于O点的点M、N,使得O在以MN为直径的圆外,求直线斜率k的取值范围.
(I)依题意,可设椭圆E的方程为
x2
a2
+
y2
b2
=1(a>b>0)

c
a
=
1
2
?a=2c,b2=a2-c2=3c2

∵椭圆经过点(1,
3
2
)
,则
1
4c2
+
9
12c2
=1
,解得c2=1,
∴椭圆的方程为
x2
4
+
y2
3
=1

(II)联立方程组
y=kx-2
x2
4
+
y2
3
=1
,消去y整理得(4k2+3)x2-16kx+4=0,
∵直线与椭圆有两个交点,
∴△=(-16k)2-16(4k2+3)>0,解得k2
1
4
,①
∵原点O在以MN为直径的圆外,
∴∠MON为锐角,即
OM
ON
>0

而M、N分别在OA、OB上且异于O点,即
OA
OB
>0

设A,B两点坐标分别为A(x1,y1),B(x2,y2),
OA
OB
=(x1y1)•(x2y2)=x1x2+y1y2

=(k2+1)x1x2-2k(x1+x2)+4═(k2+1)
4
4k2+3
-2k
16k
4k2+3
+4>0

解得k2
4
3
,②
综合①②可知:k∈(-
2
3
3
,-
1
2
)∪(
1
2
2
3
3
)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆E的焦点在x轴上,离心率为
1
2
,对称轴为坐标轴,且经过点(1,
3
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)直线y=kx-2与椭圆E相交于A,B两点,在OA上存在一点M,OB上存在一点N,使得
MA
=
1
2
AB
,若原点O在以MN为直径的圆上,求直线斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•深圳一模)已知椭圆E的焦点在x轴上,长轴长为4,离心率为
3
2

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•贵州模拟)已知椭圆E的焦点在x轴上,离心率为
1
2
,对称轴为坐标轴,且经过点(1,
3
2
)

(I)求椭圆E的方程;
(II)直线y=kx-2与椭圆E相交于A、B两点,O为原点,在OA、OB上分别存在异于O点的点M、N,使得O在以MN为直径的圆外,求直线斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知椭圆E的焦点在x轴上,长轴长为4,离心率为
3
2

(Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:2008年广东省深圳市高考数学一模试卷(文科)(解析版) 题型:解答题

已知椭圆E的焦点在x轴上,长轴长为4,离心率为
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)已知点A(0,1)和直线l:y=x+m,线段AB是椭圆E的一条弦且直线l垂直平分弦AB,求实数m的值.

查看答案和解析>>

同步练习册答案