精英家教网 > 高中数学 > 题目详情

如图,椭圆的左焦点为,右焦点为,过的直线交椭圆于两点, 的周长为8,且面积最大时,为正三角形

1)求椭圆的方程

2)设动直线与椭圆有且只有一个公共点,且与直线于点,证明:点在以为直径的圆上.

 

【答案】

(1) (2)证明过程详见解析

【解析】

试题分析:

(1)利用椭圆的定义,可以得到三角形ABF2的周长即为2a,则可以得到a的值,由椭圆的对称性,可以得到为正三角形当且仅当A点在椭圆的短轴端点,此时,则可得到c的值,再根据a,c,b之间的关系可得到b的值,进而得到椭圆E的方程.

(2)据题意,直线l与椭圆E相切于点P.设出点P的坐标,利用直线与椭圆相切,联立椭圆与直线的方程,判别式为0,即可用点P的坐标表示直线l的斜率,即得到直线l关于P坐标的表达式.联立直线l与直线x=4即可求出点Q的坐标,P,Q的坐标带入内积式,证得即可.

试题解析:

(1)由题得,因为点A,B都在椭圆上,所以根据椭圆的定义有,又因为 的周长为8,所以

, 因为椭圆是关于x,y,原点对称的,所以为正三角形当且仅当为椭圆的短轴定点,,,故椭圆E的方程为.

(2)由题得,动直线l为椭圆的切线,故不妨设切点,因为直线l的斜率是存在且为,所以,则直线,联立直线l与椭圆E的方程得 ,.则直线l的方程为,联立直线l与直线得到点,

,所以,即点M在以PQ为直径的圆上.

考点:椭圆 切线 内积 圆

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分16分)

如图,椭圆的左焦点为,上顶点为,过点作直线的垂线分别交椭圆、轴于两点.⑴若,求实数的值;

⑵设点的外接圆上的任意一点,

的面积最大时,求点的坐标.

查看答案和解析>>

科目:高中数学 来源:2014届四川成都六校协作体高二下学期期中考试理科数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为,过点的直线交椭圆于两点.当直线经过椭圆的一个顶点时,其倾斜角恰为

(Ⅰ)求该椭圆的离心率;

(Ⅱ)设线段的中点为的中垂线与轴和轴分别交于两点,

记△的面积为,△为原点)的面积为,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省苏州市高三(上)期末数学试卷(解析版) 题型:解答题

如图,椭圆的左焦点为F,上顶点为A,过点A作直线AF的垂线分别交椭圆、x轴于B,C两点.
(1)若,求实数λ的值;
(2)设点P为△ACF的外接圆上的任意一点,当△PAB的面积最大时,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源:2013年上海市崇明县高考数学一模试卷(文科)(解析版) 题型:解答题

如图,椭圆的左焦点为F1,右焦点为F2,过F1的直线交椭圆于A,B两点,△ABF2的周长为8,且△AF1F2面积最大时,△AF1F2为正三角形.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:①以PQ为直径的圆与x轴的位置关系?
②在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案