精英家教网 > 高中数学 > 题目详情
(2009•闸北区一模)若不等式|x-1|+|x+2|≥4a对任意实数x恒成立,则实数a的取值范围为
(-∞,log43]
(-∞,log43]
分析:若不等式|x+2|+|x+1|>k恒成立,只需 k小于|x+2|+|x+1|的最小值即可.由绝对值的几何意义,,求出|x-1|+|x+2|取得最小值3,得4a≤3求出a的范围.
解答:解:若不等式|x-1|+|x+2|≥4a恒成立,
只需 4a小于等于|x-1|+|x+2|的最小值即可.
由绝对值的几何意义,|x-1|+|x+2|表示在数轴上点x到1,-2点的距离之和.
当点x在1,-2点之间时(包括-1,-2点),即-2≤x≤1时,,|x-1|+|x+2|取得最小值3,
∴4a≤3
所以a≤log43]
故答案为(-∞,log43]
点评:本题考查不等式恒成立问题,本题中注意到|x-1|+|x+2|有明显的几何意义,即绝对值的几何意义,数形结合使问题轻松获解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•闸北区一模)一校办服装厂花费2万元购买某品牌运动装的生产与销售权.根据以往经验,每生产1百套这种品牌运动装的成本为1万元,每生产x (百套)的销售额R(x) (万元)满足:R(x)=
-0.4x2+4.2x-0.8,0<x≤5
14.7-
9
x-3
,x>5

(1)该服装厂生产750套此种品牌运动装可获得利润多少万元?
(2)该服装厂生产多少套此种品牌运动装利润最大?此时,利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)若f(x)=3x,则f-1(x)=
log3x
log3x

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)若指数函数f(x)的图象经过点(2,
14
)
,则f(-1)的值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•闸北区一模)设f(x)=2cos2x+
3
sin2x
g(x)=
1
2
f(x+
12
)+x+a
,其中a为非零实常数.
(1)若f(x)=1-
3
x∈[-
π
3
π
3
]
,求x;
(2)试讨论函数g(x)在R上的奇偶性与单调性,并证明你的结论.

查看答案和解析>>

同步练习册答案