精英家教网 > 高中数学 > 题目详情
4.求值:tan210°=(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$-\sqrt{3}$

分析 由条件利用诱导公式进行化简所给的式子,可得结果.

解答 解:tan210°=tan(180°+30°)=-tan30°=-$\frac{\sqrt{3}}{3}$,
故选:B.

点评 本题主要考查应用诱导公式化简三角函数式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数f(x)的单调递增区间.
(2)讨论函数f(x)的极大值或极小值,如果有,试写出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+(y-4)2=4,直线l过点(-2,0).
(1)当直线l与圆C相切时,求直线l的一般式方程;
(2)当直线l与圆C相交于A、B两点,且|AB|≥2$\sqrt{2}$时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的方程为(x-3)2+(x-4)2=16,直线l1:kx-y-k=0和l2:x+2y+4=0,直线l1与曲线C交于不相同的两点P,Q.
(1)求k的范围;
(2)若l1与x轴的交点为A,设PQ中点M,l1与l2的交点为N,求证:|AN|•|AM|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设点P圆C:x2+y2=1上的一个动点,则点P到直线x+$\sqrt{3}$y-4=0的距离最小值为(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图(1),三棱锥P-ABC中,PC⊥平面ABC,F,G,H,分别是PC,AC,BC的中点,I是线段FG上任意一点,PC=AB=2BC,过点F作平行于底面ABC的平面截三棱锥,得到几何体DEF-ABC,如图(2)所示.
(1)求证:HI∥平面ABD;
(2)若AC⊥BC,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分别是公差不为零的等差数列{bn}的前三项.
(1)求k的值;
(2)求证:对任意的n∈N*,bn,b2n,b4n不可能是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边分别为a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面积;
(2)设向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

同步练习册答案