解:(I)∵f(x)=(x
2+1)(x+a)
∴f′(x)=3x
2+2ax+1
若f′(-1)=0,
即3-2a+1=0
即a=2 …(2分)
∴f′(x)=3x
2+4x+1
当x∈(-∞,-1)∪(-

,+∞)时,f′(x)>0,
当x∈(-1,-

)时,f′(x)<0,
故函数y=f(x)在区间(-∞,-1)和(-

,+∞)上为增函数
在区间(-1,-

)上为减函数…(4分)
故在区间[-

,1]上
当x=-1,f(x)取极大值2,
当x=-

,f(x)取极小值

,
又∵f(-

)=

,f(1)=6
∴函数y=f(x)在[-

,1]上的最大值为6,最小值为

;…(6分)
(II)∵f′(x)=3x
2+2ax+1
又∵函数f(x)图象没有y=

x+m的切线
∴f′(x)=

,即3x
2+2ax+1=

无实数解 …(8分)
即△=(2a)
2-4×3×

<0 …(10分)
∴-

<a<

…(12分)
分析:(I)由已知中函数f(x)=(x
2+1)(x+a),可得f′(x)=3x
2+2ax+1,结合f′(-1)=0,求出a值,进而分析出函数y=f(x)的单调性后,可得函数y=f(x)在[-

,1]上的最大值和最小值;
(II)由(I)中f′(x)=3x
2+2ax+1,函数f(x)图象没有y=

x+m的切线,故f′(x)=

,即3x
2+2ax+1=

无实数解,即△<0,由此构造关于a的不等式,解不等式可得a值的范围.
点评:本题考查的知识点是利用导数求闭区间上函数的最值,导数的几何意义,其中(I)的关键是,求出函数在闭区间上的极值和端点处的函数值,然后进行比较,(II)的关键是根据f′(x)=

无实数解,即△<0,构造关于a的不等式.