精英家教网 > 高中数学 > 题目详情
已知集合P={x|x2+x-6=0},集合Q={x|ax+1=0},满足Q⊆P,求满足条件的实数a的取值集合.
分析:由Q⊆P,可分Q=∅和Q≠∅两种情况进行讨论,根据集合包含关系的判断和应用,分别求出满足条件的a值,并写成集合的形式即可得到答案.
解答:解:∵P={x|x2+x-6=0}={-3,2}
又∵Q⊆P
当a=0,ax+1=0无解,故Q=∅,满足条件
若Q≠∅,则Q={-3},或Q={2},
即a=
1
3
,或a=-
1
2

故满足条件的实数a∈{0,
1
3
,-
1
2
}
点评:本题考查的知识点是集合的包含关系判断及应用,本题有两个易错点,一是忽略Q=∅的情况,二是忽略题目要求求满足条件的实数a的取值集合,而把答案没用集合形式表示.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合P={x|x(x-1)≥0},Q={x|
1
x-1
>0}
,则P∩Q等于(  )
A、∅
B、{x|x≥1}
C、{x|x>1}
D、{x|x≥1或x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x=a2+1,x∈R},Q={x|y=lg(2-x),x∈R},则P∩Q=
[1,2)
[1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x<2},Q={x|-1≤x≤3},则P∪Q=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={x|x(x-3)<0},Q={x||x|<2},则P∩Q=(  )

查看答案和解析>>

科目:高中数学 来源:江西 题型:单选题

已知集合P={x|x(x-1)≥0},Q={x|
1
x-1
>0}
,则P∩Q等于(  )
A.∅B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}

查看答案和解析>>

同步练习册答案