精英家教网 > 高中数学 > 题目详情
设集合A={x|-2<x<1},B={x|x<a}满足A⊆B,则实数a的取值范围是(  )
分析:用数轴来表示数集,然后根据子集含义,求得a的范围.
解答:解:∵A⊆B,集合A中的任何一个元素都是集合B的元素,∴a≥1
 故选C
点评:本题考查集合之间的子集关系,易错点是端点能否取到.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤5},B={x|m-1≤x≤2m+1}.若A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2≤x<4},B={x|x≥3},那么A∪B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2≤x<4},B={x|3x-7≥8-2x},求A∩B,?R(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2<x<-1},B={x|y=lg
x-a3a-x
,a≠0,a∈R}.
(1)当a=1时,求集合B;
(2)当A∪B=B时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|-2≤x≤4},集合B={x|-3<x<2},则A∪B=
(-3,4]
(-3,4]

查看答案和解析>>

同步练习册答案