精英家教网 > 高中数学 > 题目详情
若函数f(x)的图象在区间[a,b]上连续不断,给定下列的命题:
①若f(a)•f(b)<0,则f(x)在区间[a,b]上恰有1个零点;
②若f(a)•f(b)<0,则f(x)在区间[a,b]上至少有1个零点;
③若f(a)•f(b)>0,则f(x)在区间[a,b]上没有零点;
④若f(a)•f(b)>0,则f(x)在区间[a,b]上可能有零点.
其中正确的命题有
 
 (填写正确命题的序号).
考点:函数零点的判定定理
专题:计算题,函数的性质及应用
分析:由函数的零点的判定定理可知,是充分条件但不是必要条件,从而解得.
解答: 解:若函数f(x)的图象在区间[a,b]上连续不断,
①若f(a)•f(b)<0,则f(x)在区间[a,b]上至少有1个零点,故不正确;
②若f(a)•f(b)<0,则f(x)在区间[a,b]上至少有1个零点,正确;
③若f(a)•f(b)>0,则f(x)在区间[a,b]上没有零点,不正确,可以二次函数为反例;
④若f(a)•f(b)>0,则f(x)在区间[a,b]上可能有零点,正确.
故答案为:②④.
点评:本题考查了学生对函数的零点的判定定理的掌握,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆A:(x+2)2+y2=
25
4
,圆B:(x-2)2+y2=
1
4
,动圆P与圆A、圆B均外切.
(Ⅰ) 求动圆P的圆心的轨迹C的方程;
(Ⅱ)过圆心B的直线与曲线C交于M、N两点,求|MN|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx-2cos2x+1.
(Ⅰ)当x∈[0,
π
2
]时,求函数f(x)的最大值;
(Ⅱ)若f(α)=
8
5
(α∈[0,
π
6
]),求cos2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二次函数f(x)=x2+bx+c在(m,m+1)内有两个不同的实根,则(  )
A、f(m)和f(m+1)都大于
1
4
B、f(m)和f(m+1)至少有一个大于
1
4
C、f(m)和f(m+1)都小于
1
4
D、f(m)和f(m+1)至少有一个小于
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|log2x-m|log2x+2log2x-3(m∈R).
(1)若m=1,求函数f(x)在区间[
1
4
,4
]的值域;
(2)若函数y=f(x)在(0,+∞)上为增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
3
sin2ωx+1(ω>0)在区间[-
2
π
2
]上为增函数,则ω的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,那么输出的S=(  )
A、720B、120
C、24D、-120

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xoy中,椭圆C:
x2
a2
+
y2
b2
=1,长半轴长为4,离心率为
1
2

(1)求椭圆C的标准方程;
(2)若点E(0,1),问是否存在直线l与椭圆交于M,N两点且|ME|=|NE|,若存在,求出直线l斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2sinxcosx+m(sinx+cosx)-2,
(1)当m=1时,求f(x)的值域;
(2)若对于任意的x∈R,f(x)<0恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案