精英家教网 > 高中数学 > 题目详情
已知椭圆的一个焦点F1(0,-2
2
)
,且离心率e满足
2
3
,e,
4
3
成等比数列.
(1)求椭圆的标准方程;
(2)试问是否存在直线l,使l与椭圆交于不同的两点M,N,且线段MN恰被点P(-
1
2
3
2
)
平分.
(1)e2=
8
9
,∴
c
a
=
2
2
3
,∵c=2
2
,∴a=3…(2分)
∴b2=1,∴
y2
9
+x2=1
…(4分)
(2)假设存在这样的直线l,设M(x1,y1),N(x2,y2
y21
9
+
x21
=1,
y22
9
+
x22
=1
,作差得(y1+y2)(y1-y2)+9(x1+x2)(x1-x2)=0…(6分)
∵线段MN恰被点P(-
1
2
3
2
)
平分
∴x1+x2=-1,y1+y2=3
设直线l的斜率为k,则k=3,∴直线l的方程为y=3x+3…(10分)
检验:
y=3x+3
y2+9x2=9
,整理得x2+x=0显然△>0
检验成立,所以存在这样的直线l….(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知椭圆数学公式的一个焦点F(3,0),则a=________.

查看答案和解析>>

科目:高中数学 来源:陕西省模拟题 题型:解答题

已知椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F,
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:广东省期中题 题型:解答题

已知椭圆的一个焦点F与抛物线y2=4x的焦点重合,且截抛物线的准线所得弦长为,倾斜角为45°的直线l过点F,
(Ⅰ)求该椭圆的方程;
(Ⅱ)设椭圆的另一个焦点为F1,问抛物线y2=4x上是否存在一点M,使得M与F1关于直线l对称,若存在,求出点M的坐标,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪民族中学市高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知椭圆的一个焦点F(3,0),则a=   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南省玉溪民族中学市高二(上)期中数学试卷(理科)(解析版) 题型:填空题

已知椭圆的一个焦点F(3,0),则a=   

查看答案和解析>>

同步练习册答案