精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知两条直线L1:2x-3y+2=0,L2:3x-2y+3=0.有一动圆(圆心和半径都在变动)与L1,L2都相交,并且L1,L2被截在圆内的两条线段的长度分别是定值26,24,求圆心M的轨迹方程,并说出轨迹的名称.
分析:设圆心M的坐标为(x,y),欲求其轨迹方程,即寻找其坐标间的关系,根据弦、弦心距、半径三者之间的关系及点到直线的距离公式即可得到.
解答:解:设圆心M的坐标为(x,y),圆的半径为r,
点M到L1,L2的距离分别为d1,d2
根据弦、弦心距、半径三者之间的关系,有
d12+(
26
2
)2=r2

d22+(
24
2
)2=r2

得d22-d12=52
根据点到直线的距离公式,得
d1=
|2x-3y+2|
13
d2=
|3x-2y+3|
13
代入上式,
得方程(
2x-3y+2
13
)2-(
3x-2y+3
13
)2=25

化简得x2+2x+1-y2=65.即
(x+1)2
65
-
y2
65
=1

所以轨迹是双曲线.
点评:求曲线的轨迹方程是解析几何的基本问题.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:2015届吉林省高一上学期期末考试数学试卷(解析版) 题型:解答题

(10分)如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2014届吉林省高一上学期质量检测数学 题型:解答题

(10分)如图,已知两条直线l1:x-3y+12=0,l2:3x+y-4=0,过定点P(-1,2)作一条直线l,分别与l1,l2交于M、N两点,若P点恰好是MN的中点,求直线l的方程.

 

 

 

 

 

查看答案和解析>>

同步练习册答案